Avtoprokat-rzn.ru

Автопрокат Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управление коллекторным двигателем постоянного тока методом ШИМ

Управление коллекторным двигателем постоянного тока методом ШИМ

Для подачи питания на обмотки ротора коллекторного двигателя постоянного тока используется встроенный коммутатор, получивший наименование коллектор. Конструктивный элемент состоит из медных пластин, изолированных друг от друга с помощью диэлектрика. По пластинам скользят графитовые щетки, попеременно подавая электрическое напряжение на разные обмотки ротора. В результате образуется переменное магнитное поле, взаимодействующее с постоянным полем статора. Так электрическая энергия преобразуется в механическую и вал двигателя начинает вращаться. На производстве и в быту применяется мотор-редуктор — система, состоящая из электродвигателя и редуктора. В качестве примера можно привести схему движения щеток лобового стекла автомобиля. Вращение ротора передается на цилиндрические колеса с косыми зубьями, которые приводят дворники в рабочее положение.

Регулирование оборотов двигателя постоянного тока методом ШИМ

Главные характеристики электродвигателя — мощность, скорость вращения и крутящий момент (иногда еще выделяют момент инерции ротора). От этих величин зависит, сможет ли электропривод справиться с возложенными на него задачами. В большинстве электрических сетей используется переменный ток, который перед подачей на щетки электромотора нужно сделать постоянным. Для этого используют выпрямители, в их схеме нередко предусмотрена возможность добавления дополнительных сегментов для регулировки напряжения. Основной недостаток выпрямителя заключается в том, что при его работе происходит существенная потеря мощности, а значит, снижается КПД и часть электроэнергии уходит в никуда.

Для того, чтобы управление двигателем постоянного тока было эффективным, применяют широтно-импульсную модуляцию, сокращенно ШИМ. Принцип действия ШИМ можно объяснить на простом примере: если взять электрический мотор малой мощности и запитать его от батарейки, вал двигателя будет вращаться с максимальной скоростью, но если попеременно замыкать и размыкать контакты, идущие к источнику питания, частота вращения ротора изменится, какое-то время он будет двигаться по инерции. На щетки коллектора подается полное напряжение, а ШИМ позволяет установить точное время подачи. Способ дает возможность управлять вращением вала с применением цифровых микроконтроллеров.

Изменение скорости вращения ротора

Регулятор оборотов коллекторного двигателя подает на щетки импульсы. Например, максимальное напряжение электромотора 12 Вольт, а нам нужно, чтобы он работал в половину своей силы. Как реализовать это на практике, используя широтно-импульсную модуляцию? Для этого нужно рассмотреть понятие импульса — всплеска напряжения. Если таких всплесков в течение 1 секунды случается 10, то говорят о том, что частота импульсов составляет 10 Герц. То есть, за секунду на щетки электродвигателя 10 раз подается полное напряжение. Для начала нужно определить период следования импульсов T по формуле:

где F — это частота. В нашем случае частота равна 10 Гц, тогда:

то есть, напряжение поднимается от 0 Вольт до 12 и снова опускается до 0 за 0,1 секунды.

Еще одной важной характеристикой импульса является скважность S — это отношение периода следования к продолжительности импульса, не имеющее единиц измерения. Параметр определяется по формуле:

где t — длина импульса. В нашем случае длина импульса составит половину от периода следования импульса, ведь нам нужен мотор, работающий вполсилы. Тогда получим:

Теперь вычислим, сколько процентов от максимального числа оборотов мы получим с нашими показателями, для этого найдем коэффициент заполнения D, выражаемый в процентах и вычисляемый по формуле:

Читайте так же:
Регулировка зажигания мопеда зид

где S — полученная ранее скважность. Выполняем подсчет:

Если в течение секунды на обмотку электродвигателя мы 10 раз подадим напряжение, которое будет длиться 0,05 секунды, то получим скорость вращения, соответствующую 6 Вольтам напряжения. В нашем случае периоды подачи и отсутствия напряжения равны, но если нужно получить повышенное количество оборотов ротора, длину импульса t нужно увеличивать. Например, необходимо получить 75% от максимальной скорости вращения вала, тогда длина импульса t должна быть равна:

то есть 75% времени периода следования импульсов нужно подавать ток.

Теперь вычислим коэффициент заполнения:

Это наглядный пример. В реальности после завершения подачи тока на щетки, вал электродвигателя продолжает двигаться по инерции, поэтому если угловая скорость ротора растет и не успевает уменьшиться в течение паузы, регулирование потеряет свою эффективность.

Способы торможения двигателя

Если используется мотор-редуктор, или электродвигатель с нагрузкой на вал, обеспечивающей быстрое торможение, то в принципиальной схеме ШИМ достаточно предусмотреть ключ и один диод. Во время работы ключ подает импульс на коллектор, отчего происходит разгон ротора, после прекращения подачи питания, вал затормаживается самостоятельно, благодаря статической нагрузке. При этом существует 2 основных режима работы:

  1. Режим непрерывного тока. Ток в якоре хотя и уменьшается во время паузы, но все же продолжает протекать в прежнем направлении.
  2. Режим прерывистого тока. Ток в якоре течет только во время действия импульса, на паузе напряжение равняется нулю.

На двигателях, которые работают без статической нагрузки, необходимо применять электрическое торможение. Для этого в принципиальную схему включают сопротивление. Во время паузы, ключ присоединяет якорь мотора к сопротивлению, для запуска процесса динамического торможения.

Виды преобразователей

Широтно-импульсные преобразователи, осуществляющие управление двигателем постоянного тока, состоят из силовой части, схемы управления и подразделяются на следующие виды:

  • Тиристорные. Дополняются схемами с параллельной и последовательной искусственной коммутацией.
  • С запираемыми тиристорами. Схема работы мало отличима от транзисторных.
  • Транзисторные. Характеризуются низкой инерционностью и минимальным внутренним сопротивлением.

Широтно-импульсный регулятор оборотов коллекторного двигателя позволяет гибко настраивать скорость вращения ротора с минимальным показателем рассеивания мощности.

Виды и устройство регуляторов оборотов коллекторных двигателей

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности — выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Коллекторный двигатель

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Регулятор оборотов коллекторного двигателя на TDA1085

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения конденсатор заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего симистор открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Простейший регулятор оборотов коллекторного двигателя

Схема простого регулятора оборотов коллекторного двигателя

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный диммер для регулировки яркости ламп накаливания, обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Схема регулятора оборотов

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Блок управления коллекторного двигателя

Принцип регулирования с микросхемами на постоянном токе — это конечно ШИМ — широтно-импульсная модуляция. Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Плата регулятор оборотов без потери мощности для двигателей от стиральных машин “TDA1085 CONTROLLER”

Полностью собранная настроенная и проверенная плата регулировки оборотов двигателей от стиральных машин без потери мощности для двигателей мощностью до 1000Вт- "TDA1085 CONTROLLER". Плата собрана на оригинальном контроллере TDA1085C а не его дешевых аналогах, а также установлен мощный симистор с током до 40А что обеспечивает большой запас по мощности регулятора.

Видео обзор платы регулятора оборотов:

Подключение платы TDA1085 controller и переключателя реверса

Комплектация платы TDA1085C controller с проводами стоит 800грн.

— Длина проводов от платы до двигателя — 1 метра.

— Длина проводов от платы до переключателей, светодиода и переменного резистора — 20см.

— Длина сетевого шнура — 1 метр.

Плата подходит для управления оборотами коллекторных электродвигателей от современных стиральных машин. Для корректной работы платы двигатель должен быть оснащен таходатчиком (Тахогенератором), через который осуществляется обратная связь!

Плата обеспечивает поддержку оборотов без потери мощности даже на минимальных оборотах двигателя!

Изготовление станков (токарного, фрезерного, сверлильного и т. д.) из двигателя для стиральной машины

Так как двигатели от стиральных машин обладают высокой надежностью, и достаточно доступны по цене (А у многих просто лежат дома без дела от сломанной стиральной машинки). Их широко применяют для изготовления различных станков и приспособлений: точильных станков, токарных и даже фрезерных станков, сверлильных станков, медогонок, гончарных кругов, и другого различного оборудования.

Плата контроллер двигателя стиральной машины, не только регулирует обороты, но и надежно поддерживает их при появлении нагрузки на валу! Что особенно актуально при использовании двигателя от стиральной машины для фрезерного, токарного или сверлильного станка, где возможно резкое увеличение нагрузки на вал двигателя.

Также на плате установлены подстроечные резисторы для настройки следующих параметров работы регулятора:

  • Максимальные обороты — можно ограничить диапазон регулировки оборотов выносным потенциометром.
  • Скорости набора оборотов при вращении потенциометра — настройка плавности набора оборотов.
  • Скорости реакции платы на появление нагрузки на валу.
  • А также подстройки синхронизации таходатчика.

Плата регулятор оборотов двигателя от стиральной машины с поддержкой мощности

В комплектацию платы регулятора оборотов входит:

    1. Спаянная, настроенная и проверенная плата регулятора оборотов TDA1085 CONTROLLER.
    2. Переменный резистор с пластиковой ручкой.
    3. Клавишный переключатель включения.
    4. Клавишный переключатель направления вращения (Для реверса).
    5. Светодиод индикации.
    6. Запасной предохранитель.
    7. Краткое описание.

    * Провода для подключения двигателя и сетевой шнур, в стандартную комплектацию не входят и заказываются отдельно.

    Регуляторы оборотов с поддержанием мощности в двигателях

    Регулятор оборотов с поддержанием мощности

    Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

    Виды двигателей и принцип работы

    Регулятор оборотов коллекторного двигателя 220в своими руками

    Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

    Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

    Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

    Схема регулятора оборотов коллекторного двигателя 220в

    Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

    На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

    Устройство коллекторного двигателя

    Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

    Регулятор оборотов с поддержанием мощности схема

    вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

    По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

    Типы регулировки

    Существует довольно много вариантов регулировки оборотов. Вот основные из них:

    • Блок питания с регулировкой выходного напряжения.
    • Заводские устройства регулировки, которые идут изначально с электромотором.
    • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

    Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

    Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

    Схема регулятора оборотов двигателя постоянного тока 12в

    Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

    При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

    К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

    Схема выглядит следующим образом.

    Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

    Регуляторы мощности постоянного тока

    Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

    Регулятор оборотов электродвигателя 12в своими руками

    Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

    Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

    Асинхронный двигатель и регулятор оборотов

    Схема регулировки оборотов двигателя постоянного тока 12в

    Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

    Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

    Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

    С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

    Регуляторы оборотов с поддержанием мощности в двигателях

    • Тип соединения «треугольник».
    • Необходим драйвер трехфазного моста IR2133.
    • Микроконтроллер AT90SPWM3B.
    • Для прошивки микроконтроллера необходим программатор.
    • Мощные транзисторы IRG4BC30W или их аналоги.
    • ЖК-дисплей в качестве индикатора.
    • Импульсный блок питания, который можно купить или собрать собственноручно.

    Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

    Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector