Avtoprokat-rzn.ru

Автопрокат Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как ремонтировать автомобиль

РЕГУЛИРОВКА КЛАПАНОВ ДВИГАТЕЛЯ

В этой статье мы рассмотрим способ регулировки зазоров клапанов и узнаем, как отрегулировать клапана двигателя самому.

зачем и КАК регулировать КЛАПАНа?

Как вы уже, наверное слышали, в каждом цилиндре есть выпускной и впускной клапан. Впускной клапан отвечает за впуск горючей смеси, а выпускной клапан за выпуск отработавших газов. За своевременное открытие и закрытие клапанов отвечает газораспределительный механизм (или клапанный механизм).

Регулировка клапанов очень важный процесс, ведь при неправильных зазорах эффективность работы двигателя снижается в разы, не говоря уже о том, что это влияет на ресурс двигателя.

Что будет, если будут маленькие зазоры клапанов?

Маленькие зазоры клапанов будут приводить к подгоранию седел клапанов.

Что будет, если будут большие зазоры клапанов?

Большие зазоры клапанов будут приводить к неполному открытию клапанов, что будет сказываться на мощности двигателя. Увеличенные зазоры клапанов можно распознать по характерному металлическому стуку. Шумы в двигателе могут сигнализировать о неисправности ГРМ.

Как часто надо регулировать клапана?

Клапана регулируются каждые 20-30 тыс. км. в соответствии с руководством по ремонту и техническому обслуживанию автомобиля.

Мы рассмотрим на примере тепловые зазоры для регулировки клапанов автомобилей ВАЗ. Как правило, для впускного и выпускного клапанов тепловые зазоры разные.

РЕГУЛИРОВКА ЗАЗОРОВ КЛАПАНОВ ДВИГАТЕЛЯ ВАЗ

Регулировку клапанов проводят на холодном двигателе. Для проверки теплового зазора следует воспользоваться специальным инструментом – плоским щупом. Отрегулировать тепловой зазор можно поворачивая регулировочные винты коромысел клапанов (или головкой регулировочного болта на автомобилях ВАЗ 2108, ВАЗ 2109, ВАЗ 2110).

Последовательность регулировки зазоров клапанов двигателя

Прежде чем начать регулировку, установите поршень цилиндра в ВМТ (верхнюю мертвую точку) в такт сжатия. При этом положении оба клапана регулируемого цилиндра должны быть закрыты, а коромысла этих клапанов должны свободно качаться в пределах зазора.

После этого потихоньку отпускайте контргайку на регулировочном винте или болте. С помощью плоского щупа и регулировочного винта регулируйте необходимый зазор, после чего затяните контргайку.

«Следите за тем, чтобы во время затяжки контргайки не изменить установленный зазор».

После затяжки контргайки необходимо снова проверить тепловой зазор. Для проверки зазора используйте щуп. Щуп должен проходить в него с небольшим усилием, если такого ощущения не возникает, а он проходит очень легко или очень тяжело, надо отрегулировать зазор заново.

Чтобы отрегулировать тепловой зазор в остальных клапанах, необходимо провернуть коленчатый вал на пол оборота. Во время регулировки следует учитывать порядок работы цилиндров двигателя (1-3-4-2). Коленчатый вал проворачивайте за болт крепления шкива привода генератора.

РЕГУЛИРОВКА КЛАПАНОВ НА ДВИГАТЕЛЯХ ВАЗ СВОИМИ РУКАМИ

reg klapanПроверка зазоров между рычагами и кулачками распределительного вала: 1 — щуп; 2 — регулировочный болт; 3 — контргайка регулировочного болта.

Порядок регулировки клапанов

  1. Проворачиваете коленчатый вал по часовой стрелке до тех пор, покаметка на звездочке распределительного вала не совпадет с меткой на корпусе подшипников. В этом положении зазор регулируется у выпускного клапана 4-го цилиндра и впускного клапана 3-го цилиндра (то есть 8 и 6 кулачки).
  2. С помощью гаечного ключа зажмите регулировочный болт рычага, и в это время с помощью другого ключа ослабьте контргайку. Установите требуемый зазор регулировочным болтом, затяните контргайку. Щуп должен входить в зазор с легким сопротивлением.
    На двигателях автомобилей ВАЗ 2109, ВАЗ 21099, ВАЗ 2110 тепловые зазоры регулируются регулировочными шайбами.
  3. После регулировки зазоров в клапанном механизме, запустите двигатель и внимательно послушайте его на различных режимах работы. При регулировке клапанов следует учесть, что клапана должны быть правильно притерты (что такое притирка клапанов), а зазоры не должны превышать допустимые.

Если некоторые детали вам непонятны или вы не до конца понимаете работу газораспределительного механизма, вам следует прочитать статью про устройство газораспределительного механизма.

Регулировка лодочного мотора – Зазоры клапанов

В процессе долгой эксплуатации лодочного мотора в системе газораспределения зазоры клапанов могут измениться, что в итоге не редко приводит к различным нарушениям в работе и сбоям, а также к серьезным неисправностям. Но на японских и американских моторах известных марок (Yamaha, Tohatsu, Suzuki, Honda, Mercury, Evinrude, Johnson) случается крайне редко, но все же случается. Попробуем подробно разобрать как решить эту задачу и отрегулировать зазор клапанов.

Читайте так же:
Показать регулировку сцепления на юмз

Отрегулировав клапана двигателя мы добьемся нормального режима работы его системы газораспределения. К примеру, большой зазор приводит к нарушению подачи топлива и выпуску отработанных газов, т.к. клапан в открытом состоянии находится меньше времени топливная смесь поступает в цилиндр не в полном объеме. Так же это приводит к заметному снижению мощности мотора, плохому пуску, даже в теплое время года и большому износу клапанов. Такую неисправность характеризует высокочастотный металлический стук. Маленький же зазор приводит в итоге к подгоранию седел клапанов, а также к прогоранию самих тарелок. Тарелки клапанов прогорают из-за плохого отвода тепла в связи по причине не плотного прилегания клапанов к их седлам. Как следствие снижается компрессия и мощность мотора.

Ничего сложного в регулировке зазора клапанов нет. Если вы хотя бы теоретически понимаете принцип работы мотора, то вы с этой работой легко справитесь. Во всех двигателях внутреннего сгорания так называемый тепловой зазор это небольшое расстояние, промежуток между клапаном и коромыслом. Во время работы двигатель и все его детали сильно нагреваются и происходит их небольшое расширение. И этот зазор как раз компенсирует эти изменения.

В начале процесса, нам необходимо снять клапанную крышку на нашем лодочном моторе. Находится она всегда со стороны свечей зажигания.При отсутствии новой прокладки, снимать крышку, после откручивания болтов, следует очень осторожно, что бы прокладка осталась целой. Но, конечно же, по нормальным правилам, ее следует потом заменить.

Измерять и регулировать клапана нужно при температуре +18 С обязательно на холодном моторе. Для начала снимаем клапанную крышку (там где у мотора свечи). Заранее запаситесь прокладкой для крышки. На некоторых моторах перед откручиванием крышки возможно потребуется снять еще что нибудь, к примеру, топливный насос как на Suzuki DF9.9. Затем выкручиваем свечи зажигания, без них проворачивать коленвал будет легче. Заодно можно измерить компрессию в цилиндрах, не помешает.

Зазор выставляется щупом, когда поршень находится в верхней точке, это такт сжатия, при котором оба клапана закрыты. Для установки поршня в такое положение нужно проворачивать коленвал. Большинство производителей лодочных моторов для таких целей оставляют метки на маховике или распредвале. Эти метки просто нужно совместить и мы получим желаемое положение поршня. Если на своем лодочном моторе вы меток не нашли, то в этом случае нам помогут свечные отверстия и самодельная линейка из карандаша. Главное нужно помнить о точности измерений. Смотрите чтобы кулачки распредвала не начали поднимать коромысло впускного и выпускного клапанов. Нужное нам верхнее положение поршня ощущается по люфту коромысел. Теперь берем нужный для нашего мотора щуп (с нужной по паспорту толщиной) и вставляем его в зазор между клапаном и коромыслом. Если зазор не правильный (больше или меньше), отпускаете контргайку и выставляете правильный зазор. Затем затягиваем контргайку и обязательно снова проверяем зазор. Если все нормально, оставляем так, если зазор снова сбился – повторяем процедуру.

Имейте ввиду, что зазоры впускных и выпускных клапанов зачастую имеют разные значения. А вообще рекомендуется проводить регулировку клапанов каждые 100 м/часов.

Тоха 5 , 4 такта . (Просматривают: 7)

Boatsman! Подробнее.

Вот именно! Ожидал добавки минимум 5-6 л.с., а тут нихрена! Абидна-да!

На самом деле я к тому,что в ветке были опасения по поводу очень маленьких выставленных зазорах со всеми вытекающими!

Макс96
  • 22.09.2014
  • #4 923
max24
  • 23.09.2014
  • #4 924
max24
  • 23.09.2014
  • #4 925

Обычно все начинается после приобретения лодочного мотора линейки одинаковых характеристик, но разных показателей по мощности. Выбирается менее мощный, просто потому, что он был дешевле, либо для ознакомления с миром ботинга. При более подробном знакомстве с лодочными моторами и появлении некоторого опыта, казус в характеристиках и выявляется. Абсолютно одинаковые показатели по кубатуре рабочего объема и передаточных чисел, вес двигателя и т.д., близких друг к другу мощностей, начинают настораживать. Либо просто не хватает одной- двух лошадок для уверенного выхода в режим глиссирования . И тут начинается поиск истины. Хотя последующее приобретение комплекта лодка/мотор имеет солидную прогрессию размер/мощность, из имеющегося на данный момент лодочного моторчика, хочется напоследок выжать все возможное. Для судоводителя, решившего поменять свое плавсредство на новое по стандартной схеме, в разы увеличив размер и мощность, поможет только покупка нового мощного мотора. Из пятнашки тридцать лошадок не выгнать. А если и могло бы получиться, то не более, чем на час работы. Но есть линейки моторов 4-5-6-8 л.с. , в которых, почти у всех производителей, предыдущая модель будет являться ужатой версией следующей, за исключениями обратного действия — форсирования одной базовой модели. Та же история и с линейками 9.9-15-20, 25-35, 35-40. Тут мы уже можем кое-что сделать, только расходы на комплектующие все равно будут, так что это оправдано, если лодочный мотор в ближайшее время менять мы не собираемся. . Для четырехтактных лодочных моторов расхождения присутствуют в изменении настроек клапанов ГРМ и карбюраторах. В мощных впрысковиках еще придется сделать перепрошивку электронного блока. Работы по возвращению мотору своих лошадей не сложны, но в обязательном порядке необходимо научиться контролировать качество смеси, регулировать карбюратор и не допускать обеднения. Хорошим детектором в этом плане являются свечи зажигания. Так же, на моторах от 9.9 л.с. придется откорректировать зажигание для всех диапазонов оборотов, сдвигая его к более раннему. Но не в коем случае не отступайте от маркировок свечей и их зазора, рекомендованные производителем для вашего мотора, ну или для того, который у вас теперь получился. Играть со свечами можно только при наличии большого опыта сервисмена, тем самым изменяя некоторые характеристики мотора. »
http://goodboating.ru/v-pogone-za-ryiboy-kak-uvelichit-moshhnos/

Читайте так же:
Правила регулировки тормозов крана мостового


[FONT=&quot]Глиссирование моторных лодок. Без формул.[/FONT]
«Блинчики», которые мы в далеком и не очень детстве, пускали камушками по водной глади — ни что иное, как режим глиссирования. Конечно, вы помните, что камешек должен иметь плоскую поверхность, причем, желательно, с обоих сторон.
Плоская поверхность, которая соприкасается с водной поверхностью — это «малая килеватость» — обязательное условие для глиссирования. Очевидно, что абсолютно плоское днище лодки, с нулевой килеватостью, имеет меньшее сопротивление и наивысший коэффициент для глиссирующего режима.
Другое дело, что передвижение на плоскодонке, при, даже небольшом волнении, довольно хорошо встряхнет мозги, а кроме того, чревато разрушением корпуса судна из-за сильных ударных нагрузок. Мореходность подобного корпуса, так же лучше не рассматривать. Зато мощность лодочного мотора, для перехода в режим глиссирования, будет минимальной. Следовательно, для небольших водоемов, с вечным штилем, можно выбирать плоскодонную лодку с менее мощным, а значит, и более дешевым лодочным мотором.
Как только появляется небольшая волна на более крупных озерах и заливах, для глиссирующей лодки существует, на данный момент, самый компромиссный вариант ( не считая, конечно, многокорпусных судов, экзотических моделей корпусов и, конечно же, полуглиссирующих катеров и яхт ) — это корпус с переменной килеватостью. Так называемое, «глубокое «V» в носовой части, которое плавно переходит в более плоскую поверхность ближе к транцу лодки. Такой закрученный корпус позволяет увеличить мореходность и снизить ударные нагрузки при прохождении через волну.
Острые скулы на корпусе, в носовой ее части, работают над отсечением волны. Кормовую часть днища так же нельзя делать совсем плоской, так как это сильно увеличит рыскливость лодки и увеличит радиус циркуляции. Значит, резкий разворот может быть просто опасен.
Совершенно не хочется загружать статью сложными формулами и длинными расчетами из мореходных университетов. Нам просто необходимо вникнуть в суть процесса.
Глиссирование — это режим передвижения, когда корпус лодки перестает «плавать». Во время «плавания», на корпус действует архимедовская сила выталкивания. Если позволяет кострукция (малая килеватость ) и центр тяжести (правильная развесовка), то, при достижении необходимой скорости, корпус судна начинает уже поддерживать набегающий поток воды. Значит, лодка движется уже, в том числе, и за счет гидродинамических сил. А значение силы Архимеда, в этом случае, существенно снижается. Общепринятым является значение не более 50%.
Вспомните камешек или воднолыжника — сила Архимеда в случае глиссирования крайне мала. И камешек, и воднолыжник без спасжилета, обычно, тонут. В статическом состоянии.
Килеватость на транце имеет, конечно, свой предел, после которого, корпус лодки перестает быть глиссирующим.
Лодка с водоизмещающими обводами, имеет гораздо большую килеватость на протяжении всего корпуса, а скулы в носовой части имеют более плавные обводы. Ведь выйти в режим глиссирования ей уже не позволяет отсутствие плоскостей в кормовой части, играющие роль крыла. Поэтому, такой лодке приходится уже раздвигать перед собой водную массу, а не «лететь» над ней.
Водоизмещающий корпус имеет предел скорости, ограниченный Числом Фруда — основоположника теории корабля. Формулы, конечно, мы писать никакие не будем.
Ограничение скорости напрямую зависит от длины корпуса лодки. Ведь помимо сопротивления, которое оказывает сила трения, львиная доля энергии тратится на образование волн.
Как не удивительно, но океанский лайнер и рыболовная лодка, при движении с одинаковой скоростью, образуют одинаковую длину волны. При увеличении скорости, растет и длина волны. Учитывая длину корпуса лайнера, можно представить, сколько таких волн пройдет вдоль него. А вот размер рыболовной лодки может оказаться, на этой скорости, меньше длины волны, которую она сама и образует.
Волнообразование начинается, разумеется, с носа лодки. Поэтому, в какой-то момент, получится, что лодка находится между двух волн, прямо у их подошв. При этом она пытается взобраться на носовую волну. Увеличение скорости в таком случае не поможет. Это приведет только к резкому увеличению потребления топлива двигателем и дифферента на корму. Из-за увеличения высоты волны.
Лодка в три раза длиннее, уже будет располагаться на трех таких волнах, а значит, сможет идти намного быстрее, пока их количество не сократится до двух. Отсюда выражение — «длина бежит».
Закон Фруда является неопровержимым и основным в гидродинамике. Это мы рассмотрели варианты с водоизмещающими корпусами судов.
Имей лодка глиссирующие обводы и достаточную мощность лодочного мотора, она смогла бы перейти через гребень этой носовой волны. Так начался бы режим глиссирования.
Сам процесс переваливания через носовую волну, образованную лодкой, носит название переходного режима. Для его преодоления, требуется большая мощность лодочного мотора, чем для его поддержания. Поэтому, передвижение в переходном режиме скушает гораздо больше топлива и в этом случае тоже. А после его преодоления, излишки газа следует сбросить и перейти в крейсерский режим.
Если же вы планируете купить надувную лодку из ПВХ для рыбалки с лодочным электромотором, как основным двигателем, то выбирайте модели без вклеенного транца. Плоскость вклеенного транца, уходящая под воду — это глиссирующая геометрия лодки. Такой транец будет создавать сильное разряжение за кормой лодки, которое будет в прямом смысле, тянуть ее в обратную сторону. Для рыбалки в водоизмещающем режиме лучше купить надувную лодку с навесным транцем.
Общеизвестные расчеты для выхода на глиссирование — 1л.с. двигателя на 25 кг водоизмещения (общего веса лодки с мотором, шкипером, спиннингом, пивом и собакой) (. ). При увеличении килеватости лодки, вес на лошадь придется снизить до 22 — 20 кг.
Это приблизительный расчет. Многое зависит от конструкции лодки, плотности воды, настройки лодочного мотора, правильной развесовки и грамотных конструкторов. К примеру, на надувную лодку ПВХ, следует устанавливать лодочный мотор заведомо большей мощности, нежели на пластиковый корпус.
Помимо всего прочего, глиссирующие корпуса имеют продольные и поперечные реданы — уступы на днище лодки, для уменьшения смачиваемой поверхности и отсечения излишков воды, транцевые пластины — для стабилизации лодки и снижения излишнего дифферента и прочие ухищрения.
Грамотно спроектированный глиссирующий корпус, даже не только корпус, а вся лодка целиком, имеет очень высокую мореходность, скорость и безопасность. Кроме того, от этого зависит и экономичность лодочного мотора, что на мощных больших катерах является довольно актуальным.

Читайте так же:
Как отрегулировать пониженное давление

Регулировка клапанов: что это, зачем нужно, и что будет, если ее не делать

Если вы становились свидетелем сцены, когда опытный автомобилист деловито открывал капот машины (вашей или своей), некоторое время вслушивался в звук работающего мотора, а потом многозначительно произносил фразу «клапаны надо отрегулировать», но при этом для вас его слова были не понятнее звука двигателя, который он слушал, то сегодня мы попробуем этот пробел восполнить. Что такое регулировка клапанов, зачем она нужна, когда ее нужно делать, и что будет, если ее не делать совсем? И почему на многих машинах регулировка клапанов вообще не нужна? Давайте разберемся.

Р абота обычного поршневого двигателя предполагает подачу в цилиндры топливовоздушной смеси и отвод из них отработавших газов. Обе функции выполняют клапаны – соответственно, впускные и выпускные, попеременно открываясь в нужное время для наполнения и опорожнения цилиндра. Управляет их работой распределительный вал, имеющий специальные кулачки, которые воздействуют на верхнюю часть клапана, открывая его в цилиндр. Конструкций приводного механизма существует несколько – распредвал может воздействовать на клапаны почти непосредственно, надавливая кулачком на толкатели, или, к примеру, через специальные коромысла, толкая один их конец, в то время как другой давит на клапан. Но в любом из случаев в конструкции есть интересующая нас особенность: тепловой зазор между кулачком распредвала и деталью клапанного механизма, которая открывает клапан. Ведь рабочая температура деталей двигателя, особенно клапанного механизма и собственно клапанов, очень высока, а при нагревании металл имеет свойство расширяться, что приводит, в частности, к удлинению клапана. Именно для компенсации этого расширения нужен тепловой зазор, а регулировка этого зазора и называется «регулировкой клапанов»

Читайте так же:
Драйвера для синхронизации времени

Да, с логической точки зрения формулировка «регулировка клапанов» не совсем верна. Клапан при нормальных условиях, когда на него не давит кулачок распредвала, закрыт: тарелка клапана плотно прижата пружиной к седлу в головке блока цилиндров, а должная герметичность обеспечивается фасками на обоих элементах. Соответственно, никакая регулировка клапану здесь не требуется – а вот тепловой зазор должен быть правильным. То есть, более корректно говорить не «регулировка клапанов», а «регулировка теплового зазора привода клапанов».

Если представить себе комбинацию «клапан – толкатель – распредвал» без теплового зазора – то есть, плотно прилегающими друг к другу при неработающем двигателе, то несложно понять, что при выходе на рабочую температуру на удлинившийся клапан, «вытягиваемый пружиной из цилиндра» в сторону распредвала, из-за температурного расширения начнет постоянно давить этот самый распредвал, приводя к небольшому сжатию пружины и неплотному закрытию клапана. То есть, при достижении рабочей температуры клапан фактически перестанет полноценно выполнять одну из своих функций: плотно закрываться для герметизации камеры сгорания и ее изоляции от впускного или выпускного тракта.

Подобное может произойти, к примеру, из-за износа седел и тарелок клапанов. Соответственно, в этом случае регулировка клапанов нужна, чтобы обеспечить нужный тепловой зазор для обеспечения полного закрытия клапанов.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Второй вариант – увеличение теплового зазора: например, из-за износа поверхностей кулачков распредвала и элементов привода клапанов. В этом случае даже после достижения двигателем рабочей температуры между распредвалом и клапанным механизмом будет оставаться зазор, а касаться они будут ударно и только в момент воздействия кулачка. Это уже пагубно влияет на ресурс клапанного механизма, но есть и другие последствия: клапан будет открываться чуть позже и не полностью – а значит, ухудшится наполняемость цилиндра топливовоздушной смесью.

Если не регулировать клапаны своевременно, это приведет к изменению теплового зазора. При этом и увеличение, и уменьшение теплового зазора, как мы уже поняли, негативно влияет на ресурс и работу двигателя. Уменьшение зазора означает неполное закрытие клапанов, которое приводит к ряду последствий. Негерметичность камеры сгорания из-за приоткрытого клапана приводит к падению компрессии и прорыву раскаленных газов во впускной или выпускной тракт (в зависимости от того, впускной или выпускной клапан приоткрыт).

Читайте так же:
Регулировка клапанов рейсер нитро 250

Кроме того, стоит отметить значительно увеличивающуюся тепловую нагрузку на клапаны. Ведь плотный контакт закрытого клапана с седлом – это одно из важных условий его охлаждения, а если клапан неплотно прилегает к седлу, охлаждение ощутимо ухудшается. Особенно это касается выпускных клапанов: впускные дополнительно охлаждаются поступающей в цилиндры топливовоздушной смесью, а вот выпускные обеспечивают выход отработавших газов крайне высокой температуры, и для них охлаждение в зоне контакта с седлом имеет критическую важность. В крайнем случае плохое охлаждение клапана из-за малого теплового зазора может привести к его перегреву и разрушению – так называемому прогару. Кроме того, прорыв горящей топливовоздушной смеси в выпускной тракт повышает нагрузку на катализатор (а при его разрушении абразивная пыль может повредить и цилиндры).

Последствия увеличения теплового зазора несколько иные. Как было сказано выше, оно приводит к ударному воздействию распредвала на клапанный механизм, что негативно сказывается на его ресурсе, а также к несвоевременному и неполному открытию клапана. Ухудшение наполнения цилиндра топливовоздушной смесью при этом означает нарушение фаз газораспределения и снижение отдачи мотора: то есть, он будет хуже тянуть.

В целом величина теплового зазора, разумеется, очень невелика, это десятые доли миллиметра – примерно 0,1-0,4 мм. При этом ее обычно определяют с помощью набора щупов с шагом в 0,05 мм и менее – то есть, соблюдается точность до сотых. Стоит отметить, что тепловой зазор для впускных и выпускных клапанов различается: как мы уже знаем, выпускные клапаны нагреваются сильнее – а следовательно, сильнее увеличиваются в размерах и требуют большего теплового зазора.

На практике знать конкретные значения теплового зазора нужно только для регулировки – то есть, если вы не занимаетесь ей самостоятельно, эти цифры вам не слишком пригодятся.

Периодичность регулировки клапанов, если она предусмотрена конструкцией мотора, указывается в руководстве по эксплуатации автомобиля. В целом эта процедура выполняется не так часто – обычно это каждые 50-80 тысяч километров. Однако и более частая проверка не повредит – особенно если машина оснащена газобаллонным оборудованием, так как газовое топливо повышает тепловую нагрузку на мотор.

Второй способ узнать о необходимости регулировки клапанов – это характерный звук: стук или цоканье при работе мотора, не проходящее по мере его прогрева.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Ну а если автомобиль приобретен не новым, и его пробег уже немаленький, то регулировка теплового зазора точно не будет лишней – нужно лишь выяснить, предусмотрена ли она конструкцией.

Существует несколько конструктивных вариантов регулировки теплового зазора. К примеру, один из вариантов – это подбор шайб нужной толщины, которые вставляются между толкателем клапана и кулачком распредвала. Для регулировки зазора он сначала замеряется с имеющейся шайбой, а потом шайба при необходимости заменяется на другую, большей или меньшей толщины. Альтернативный вариант при схожей конструкции – подборка не регулировочных шайб нужной толщины, а самих толкателей с необходимыми параметрами.

Такой метод регулировки мы наглядно показывали в отдельном материале на примере Renault Logan.

Неоднократное уточнение о том, что регулировка клапанов должна быть предусмотрена конструкцией мотора, весьма важно: ведь многие двигатели этой процедуры не требуют. Зависит это от того, оснащен ли мотор гидрокомпенсаторами: это устройства, предназначенные для автоматической регулировки теплового зазора. Они работают за счет масла, поступающего в них из двигателя (поэтому, собственно, и называются « гидро компенсаторами») и полностью исключают необходимость периодической ручной регулировки клапанов. Сами они, конечно же, тоже не вечны – о необходимости их проверки и замены говорит все тот же цокающий стук, не исчезающий вскоре после запуска, а порой даже после прогрева двигателя. Однако главное, что нужно знать в контексте этого материала – это то, что моторам, оснащенным гидрокомпенсаторами, регулировка клапанов не нужна.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector