Avtoprokat-rzn.ru

Автопрокат Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сварочные трансформаторы

Сварочные трансформаторы

Сварочные трансформаторы предназначены для создания устойчивой электрической дуги, поэтому они должны иметь требуемую внешнюю характеристику. Как правило, это падающая характеристика, так как сварочные трансформаторы используются для ручной дуговой сварки и сварки под флюсом.

Промышленный переменный ток на территории России имеет частоту 50 периодов в секунду (50 Гц). Сварочные трансформаторы служат для преобразования высокого напряжения электрической сети (220 или 380 В) в низкое напряжение вторичной электрической цепи до требуемого для сварки уровня, определяемого условиями для возбуждения и стабильного горения сварочной дуги. Вторичное напряжение сварочного трансформатора при холостом ходе (без нагрузки в сварочной цепи) составляет 60—75 В. При сварке на малых токах (60—100 А) для устойчивого горения дуги желательно иметь напряжение холостого хода 70 — 80 В.

Трансформаторы с нормальным магнитным рассеянием. На рис. 1 приводится принципиальная схема трансформатора с отдельным дросселем. Комплект источников питания состоит из понижающего трансформатора и дросселя (регулятора реактивной катушки).

 Принципиальная схема трансформатора с отдельным дросселем

Рис. 1. Принципиальная схема трансформатора с отдельным дросселем (сварочный ток регулируется изменением воздушного зазора)

Понижающий трансформатор, основой которого является магнитопровод 3 (сердечник), изготовлен из большого количества тонких пластин (толщиной 0,5 мм) трансформаторной стали, стянутых между собой шпильками. На магнитопроводе 3 имеются первичная 1 и вторичная 2 (понижающая) обмотки из медного или алюминиевого провода.

Дроссель состоит из магнитопровода 4, набранного из листов трансформаторной стали, на котором расположены витки медного или алюминиевого провода 5, рассчитанного на прохождение сварочного тока максимальной величины. На магнитопроводе 4 имеется подвижная часть б, которую можно перемещать с помощью винта, вращаемого рукояткой 7.

Первичная обмотка 1 трансформатора подключается в сеть переменного тока напряжением 220 или 380 В. Переменный ток высокого напряжения, проходя по обмотке 1, создаст действующее вдоль магнитопровода переменное магнитное поле, под действием которого во вторичной обмотке 2 индуктируется переменный ток низкого напряжения. Обмотку дросселя 5 включают в сварочную цепь последовательно со вторичной обмоткой трансформатора.

Величину сварочного тока регулируют путем изменения воздушного зазора а между подвижной и неподвижной частями магнитопровода 4 (рис. 1). При увеличении воздушного зазора а магнитное сопротивление магнитопровода увеличивается, магнитный поток соответственно уменьшается, а следовательно, уменьшается индуктивное сопротивление катушки и увеличивается сварочный ток. При полном отсутствии воздушного зазора а дроссель можно рассматривать как катушку на железном сердечнике; в этом случае величина тока будет минимальной. Следовательно, для получения большей величины тока воздушный зазор нужно увеличить (рукоятку на дросселе вращать по часовой стрелке), а для получения меньшей величины тока — зазор уменьшить (рукоятку вращать против часовой стрелки). Регулирование сварочного тока рассмотренным способом позволяет настраивать режим сварки плавно и с достаточной точностью.

Современные сварочные трансформаторы типа ТД, ТС, ТСК, СТШ и другие выпускаются в однокорпусном исполнении.

Принципиальная электрическая и конструктивная схема трансформатора типа СТН

Рис. 2. Принципиальная электрическая и конструктивная схема трансформатора типа СТН в однокорпусном исполнении (а) и его магнитная схема (б). 1 — первичная обмотка; 2 — вторичная обмотка; 3 — реактивная обмотка; 4 — подвижной пакет магнитопровода; 5 — винтовой механизм с рукояткой; 6 — магнитопровод регулятора; 7 — магнитопровод трансформатора; 8 — электродержатель; 9 — свариваемое изделие

В 1924 г. академиком В. П. Никитиным была предложена система сварочных трансформаторов типа СТН, состоящих из трансформатора и встроенного дросселя. Принципиальная электрическая и конструктивная схема трансформаторов типа СТН в однокорпусном исполнении, а также магнитная система показаны на рис. 2. Сердечник такого трансформатора, изготовленный из тонколистовой трансформаторной стали, состоит из двух, связанных общим ярмом сердечников,— основного и вспомогательного. Обмотки трансформатора изготовлены в виде двух катушек, каждая из которых состоит из двух слоев первичной обмотки 1, выполненных из изолированного провода, и двух наружных слоев вторичной обмотки 2, выполненных из неизолированной шинной меди. Катушки дросселя пропитаны теплостойким лаком и имеют асбестовые прокладки.

Обмотки трансформаторов типа СТН изготовляют из медного или алюминиевого проводов с выводами, армированными медью. Величину сварочного тока регулируют с по­мощью подвижного пакета магнитопровода 4, путем изменения воздушного зазора а винтовым механизмом с рукояткой 5. Увеличение воздушного зазора при вращении рукоятки 5 по часовой стрелке вызывает, как и в трансформаторах типа СТЭ с отдельным дросселем, уменьшение магнитного потока в магнитопроводе 6 и увеличение сварочного тока. При уменьшении воздушного зазора повышается индуктивное сопротивление реактивной обмотки дросселя, а величина сварочного тока уменьшается.

ВНИИЭСО разработаны трансформаторы этой системы СТН-500-П и СТН-700-И с алюминиевыми обмотками. Кроме того, на базе этих трансформаторов разработаны трансфор­маторы ТСОК-500 и ТСОК-700 со встроенными конденсаторами, подключенными к первичной обмотке трансформатора. Конденсаторы компенсируют реактивную мощность и обеспечивают повышение коэффициента мощности сварочного трансформатора до 0,87.

Читайте так же:
Электромагнитный клапан регулировки холостого хода

Однокорпусные трансформаторы СТН более компактны, масса их меньше, чем у трансформаторов типа СТЭ с отдельным дросселем, а мощность одинакова.

Трансформаторы с подвижными обмотками с увеличенным магнитным рассеянием. Трансформаторы с подвижными обмотками (к ним относятся сварочные трансформаторы типа ТС, ТСК и ТД) получили в настоящее время широкое применение при ручной дуговой сварке. Они имеют повышенную индуктивность рассеяния и выполняются однофазными, стержневого типа, в однокорпусном исполнении.

Катушки первичной обмотки такого трансформатора неподвижные и закреплены у нижнего ярма, катушки вторичной обмотки подвижные. Величину сварочного тока регулируют изменением расстояния между первичной и вторичной обмотками. Наибольшая величина сварочного тока достигается при сближении катушек, наименьшая — при удалении. С ходовым винтом 5 связан указатель примерной величины сварочного тока. Точность показаний шкалы составляет 7,5 % от значения максимального тока. Отклонения величины тока зависят от подводимого напряжения и длины сварочной дуги. Для более точного замера сварочного тока должен применяться амперметр.

Сварочные трансформаторы
Рис. 3. Сварочные трансформаторы: а — конструктивная схема трансформатора ТСК-500; б — электрическая схема трансформатора ТСК-500: 1 — сетевые зажимы для проводов; 2 — сердечник (магнитопровод); 3 — рукоятка регулирования тока; 4 — зажимы для подсоединения сварочных проводов; 5 — ходовой винт; 6 — катушка вторичной обмотки; 7 — катушка первичной обмотки; 8 — компенсирующий конденсатор; в — параллельное; г — последовательное соединение обмоток трансформатора ТД-500; ОП — первичная обмотка; ОВ — вторичная обмотка; ПД — переключатель диапазона токов; С — защитный фильтр от радиопомех.Рис.4 Портативный сварочный аппарат

На рис. 3-а,б показаны принципиальная электрическая и конструктивная схемы трансформатора ТСК-500. При повороте рукоятки 3 трансформатора по часовой стрелке катушки обмоток 6 и 7 сближаются, вследствие чего магнитное рассеяние и вызываемое им индуктивное сопротивление обмоток уменьшаются, а величина сварочного тока увеличивается. При повороте рукоятки против часовой стрелки катушки вторичной обмотки удаляются от катушек первичной обмотки, магнитное рассеяние увеличивается и величина сварочного тока уменьшается.

Трансформаторы снабжены емкостными фильтрами, предназначенными для снижения помех радиоприему, создаваемых при сварке. Трансформаторы типа ТСК отличаются от ТС наличием компенсирующих конденсаторов 8, обеспечивающих повышение коэффициента мощности (соs φ). На рис. 3, в показана принципиальная электрическая схема трансформатора ТД-500.

ТД-500 представляет собой понижающий трансформатор с повышенной индуктивностью рассеяния. Сварочный ток регулируют изменением расстояния между первичной и вторичной обмотками. Обмотки имеют по две катушки, расположенные попарно на общих стержнях магнитопровода. Трансформатор работает на двух диапазонах: попарное параллельное соединение катушек обмоток дает диапазон больших токов, а последовательное — диапазон малых токов.

Последовательное соединение обмоток за счет отключения части витков первичной обмотки позволяет повысить напряжение холостого хода, что благоприятно отражается на горении дуги при сварке на малых токах.

При сближении обмоток уменьшается индуктивность рассеяния, что приводит к увеличению сварочного тока; при . увеличении расстояния между обмотками увеличивается индуктивность рассеяния, а ток соответственно уменьшается. Трансформатор ТД-500 имеет однокорпусное исполнение с естественной вентиляцией, дает падающие внешние характеристики и изготавливается только на одно напряжение сети — 220 или 380 В.

однофазный стержневого типа состоит из следующих основных узлов: магнитопровода — сердечника, обмоток (первичной и вторичной), регулятора тока, переключателя диапазонов токов, токоуказательного механизма и кожуха.

Алюминиевые обмотки имеют по две катушки, расположенные попарно на общих стержнях магнитопровода. Катушки первичной обмотки неподвижно закреплены у нижнего ярма, а вторичной обмотки — подвижные. Переключение диапазонов тока производят переключателем барабанного типа, рукоятка которого выведена на крышку трансформатора. Величину отсчета тока производят по шкале, отградуированной соответственно на два диапазона токов при номинальном напряжении питающей сети.

Емкостной фильтр, состоящий из двух конденсаторов, служит для снижения помех радиоприемным устройствам.

Правила техники безопасности при эксплуатации сварочных трансформаторов. В процессе работы электросварщик постоянно обращается с электрическим током, поэтому все токоведущие части сварочной цепи должны быть надежно изолированы. Ток величиной 0,1 А и выше опасен для жизни и может привести к трагическому исходу. Опасность поражения электрическим током зависит от многих факторов и в первую очередь от сопротивления цепи, состояния организма человека, влажности и температуры окружающей атмосферы, напряжения между точками соприкосновения и от материала пола, на котором стоит человек.

Читайте так же:
Регулировка тока на обмотки возбуждения

Сварщик должен помнить, что первичная обмотка трансформатора соединена с силовой сетью высокого напряжения, поэтому в случае пробоя изоляции это напряжение может быть и во вторичной цепи трансформатора, т. е. на электрододержателе.

Напряжение считается безопасным: в сухих помещениях до 36 В и в сырых до 12 В.

При сварке в закрытых сосудах, где повышается опасность поражения электрическим током, необходимо применять ограничители холостого хода трансформатора, специальную обувь, резиновые подстилки; сварка в таких случаях ведется под непрерывным контролем специального дежурного. Для снижения напряжения холостого хода существуют различные специальные устройства — ограничители холостого хода.

Сварочные трансформаторы промышленного использования, как правило, подключают к трехфазной сети 380 В, что в бытовых условиях не всегда удобно. Как правило, подключение индивидуального участка к трехфазной сети хлопотно и дорого, и без особой нужды это не делают. Для таких потребителей промышленность выпускает сварочные трансформаторы, рассчитанные на работу от однофазной сети с напряжением 220 — 240 В. Пример такого портативного сварочного аппарата приведен на рис.4. Этот аппарат, обеспечивающий разогрев дуги до 4000°С, уменьшает обычное сетевое напряжение, одновременно повышая сварочный ток. Ток в установленном диапазоне регулируется с помощью ручки, смонтированной на передней панели аппарата. В комплект аппарата входит сетевой кабель и два сварочных провода, один из которых соединен с электрододержателем, а второй — с заземляющим зажимом.

Обычно для домашних работ вполне подходят аппараты, вырабатывающие сварочный ток в 140 ампер при 20-процентном рабочем цикле. При выборе аппарата следует обращать внимание на то, чтобы регулировка сварочного тока была плавной.

Балластный реостат. Настройка сварочного тока

балластный реостат

балластный реостат

Основой стабильного протекания сварочного процесса является поддержание требуемой вольтамперной характеристики дугового разряда. В инверторных сварочных установках это достигается вследствие двухстадийного преобразования рабочего тока и определённой периодичности включения и выключения аппарата. Для остальных случаев в схеме должен присутствовать балластный реостат.

Назначение и устройство балластного реостата

Для формирования крутопадающей вольтамперной характеристики рабочего тока во время сварки, балластный реостат должен выполняет две функции: дискретно регулировать силу тока, и компенсировать его постоянную составляющую, которая возникает при питании сварочного поста от трансформатора.

Эффективность балластного реостата определяется числом его рабочих секций, каждая из которых представляет собой последовательную электрическую цепь из резистора с определённым сопротивлением и рубильника, механически разрывающего эту цепь. Соединение секций – параллельное, что создаёт наилучшие возможности для комбинированного включения в работу каждой из них. В результате регулировка тока может выполняться с шагом 5…10 А, чего в большинстве случаев бывает вполне достаточно. В общую цепь сварочного поста балластный реостат подключается последовательно источнику тока.

устройство балластного реостата

Конструктивно балластный реостат представляет собой агрегат, состоящий из:

  1. Закрытого обдуваемого корпуса.
  2. Нескольких плат из нихромовых или константановых лент.
  3. Прерывателей, число которых соответствует числу ступеней регулирования.
  4. Клемм, к которым подключаются кабеля сварочного аппарата.
  5. Блока включения нужного сварочного диапазона.

Все элементы управления выводятся на одну из внешних панелей корпуса. В наиболее современных конструкциях балластных реостатов в корпус встраиваются вентиляторы, устраняющие перегрев аппарата при длительной работе на больших токах (в противном случае для этого приходится последовательно подключать несколько балластных реостатов), а также конденсаторные батареи, которые компенсируют постоянную составляющую тока, возникающую при специальных процессах сварки, в частности, алюминия.

схема сварочного реостата

Линейка РБ наиболее распространённых балластных реостатов, выполненных по вышеописанной схеме, включает в себя следующие типоразмеры:

  • РБ-201 – регулирует ток в пределах от 10 до 200 А;
  • РБ-300 – регулирует ток в пределах от 10 до 300 А;
  • РБ-302 – регулирует ток в пределах от 10 до 315 А;
  • РБ-306 – регулирует ток в пределах от 6 до 315 А;
  • РБ-501 – регулирует ток в пределах от 10 до 500 А.

Балластный реостат РБ-302

Используется для ступенчатого управления силой сварочного тока в операциях ручной и полуавтоматической сварки или наплавки покрытий при помощи металлических электродов. Работает совместно с генераторами и многопостовыми сварочными выпрямителями. Рассчитан на поддерживание напряжения на дуге в пределах 27…30 В, предельное напряжение не может превышать 70 А при критическом падении на зажимах – 30 А. Охлаждение – воздушное, рекомендуемое значение ПВ — продолжительности включения составляет 60…65 % (если продолжительность сварочного цикла превышает 10 мин, то значение ПВ необходимо уменьшать).

Читайте так же:
Как отрегулировать подачу топлива в карбюраторе на оке

Реостат РБ-302 может работать от сети напряжением 220 и 380 В, и с любым основным источником сварочного тока, кроме сварочных трансформаторов ТСД-300 и сварочных выпрямителей ВС-400 и ВС-600. В этих случаях необходимо подключать два балластных реостата, которые соединяются параллельно. Сила тока при этом увеличится вдвое.

реостат рб-302

Балластный реостат модели РБ-302 имеет два рабочих диапазона сварочных токов: 5 А и 10 А, при этом наименьшее значение разности токов в различных ступенях составляет 10 А. Число ступеней регулировки – 6, их включение и выключение производится при помощи контактных ножей. Плата веток регулирования собрана на фехралевых жаропрочных проволоках диаметром 2,2 мм, для электроизоляции используются профилированные керамические пластины.

Периодический контроль за работой балластного реостата РБ-302 производится путём измерения фактического сопротивления изоляции относительно заземлённого корпуса агрегата: соответствующее значение должно быть не меньше 500 кОм.

Разновидностью указанной модели является балластный реостат типа РБ-302У2, который снабжён дополнительной изолирующей крышкой и улучшенной электроизоляцией. Это позволяет использовать аппарат вне помещений, и вести безопасную сварку в условиях повышенной влажности окружающего воздуха, либо при активном ультрафиолетовом излучении.

сварочный трансформатор и реостат

Балластный реостат РБ-306

Эксплуатация модели РБ-302 выявила ряд ограничений. Быстрый выход из строя резисторов вследствие их перегрева и недостаточную точность регулировки по току. В частности, при длительных ПВ реостат сильно перегревается, что вынуждает применять аналогичный аппарат, подключаемый параллельно основному.

Модель РБ-306 лишена этих недостатков. Корпус аппарата выполнен с увеличенным количеством жалюзи, которые улучшают обдув элементов резисторных плат, а в качестве материала проволок использованы фехралевые пружины диаметром 3 мм. Первая ветка – на 6 А – собрана в виде трубчатого электронагревателя.

Модульная схема размещения элементов сопротивления облегчает их диагностику и замену. В результате указанных конструктивных изменений при тех же размерах и весе агрегата удалось расширить диапазон управления токами сварки и повысить точность регулировки.

реостат рб-306

На базе РБ-306 собираются блоки балластных реостатов (маркируются ББР), которые используют при электродуговой резке металлов. ББР эффективны в случае многопостовой сварки, применяются и для управления сварочным током от выпрямителей автоматических сварочных аппаратов.

При использовании балластных реостатов следует придерживаться следующих правил эксплуатации:

  • Работать при условиях, которые указаны в паспорте на аппарат (климатическое исполнение всех типов балластных реостатов – от -40 до +45ºС);
  • Запрещается эксплуатация в атмосфере, загрязнённой пылью и вблизи с источниками газа и пара, которые способствуют разрушению электроизоляции;
  • Используемый балластный реостат должен проходить периодическую поверку в специализированной электролаборатории. Сроки и содержание такой поверки определяются положениями РД 03-614-03.

Как регулировать ток на сварочном аппарате схема

Регулирование силы сварочного тока при дуговой сварке обычно осуществляется с помощью самого источника питания. Все возможные способы регулирования тока можно свести к двум: изменению напряжения холостого хода источника Uxx, изменению электрического сопротивления источника Z.

При сварке на монтаже или при сварке неповоротного стыка трубопровода, особенно малого диаметра, сварщик меняет положение электрода до 180 градусов за время расплавления (сгорания) одного электрода. При этом сварочный ток для одного пространственного положения оказывается неоптимальным для другого.

На многих зарубежных источниках питания предусмотрена регулировка тока во время сварки. К примеру, при TIG сварке зачастую используется педаль, нажатие на которую может регулировать силу тока (рис. 1) [1]. Либо используют пульт ДУ, который сварщик может установить и на горелку для регулировки силы тока сварки [2].

kram1.tif

Рис. 1. Виды педалей управления сварочным током

kram2.tif

Рис. 2. Виды пультов управления сварочным током

Недостатком всех этих устройств является их неуниверсальность и применимость только для тех источников питания, в которых данная функция предусмотрена изначально. Модернизировать же любой источник питания не представляется возможным. Также все решения производятся за рубежом. В России же это направление только начинает развиваться.

Целью данной работы является разработка универсального регулятора сварочным током непосредственно с горелки.

Результаты исследования и их обсуждение

Главными требованиями к регулятору сварочным током непосредственно с горелки являются:

1. Универсальность. Регулятор должен работать с любым источником питания, независимо от способа сварки. Исходя из этого, регулировка должна происходить воздействием на органы управления источников питания.

2. Безопасность. При работе с данным регулятором сварщик не должен попасть под действие высокого напряжения. То есть органы управления регулятора должны быть гальванически развязаны от силовой части, а используемые напряжения не должны превышать 12 В.

Читайте так же:
Прогревать ли двигатель при регулировке клапанов

3. Удобство. Регулятор должен прикрепляться к держателю либо горелке и иметь удобное управление. Он не должен утомлять сварщика во время долгой и непрерывной работы.

Сущность устройства заключается в следующем: регулирование параметров (силы тока, например) осуществляется сервоприводом с помощью контроллера, на который приходит сигнал от датчика давления или дополнительной кнопки или реостата. Контроллер может плавно регулировать параметры на время удержания кнопки или изменять угол поворота ступенчато или по заданной программе. В устройстве, представленном в данной статье, использовался датчик давления. Настройки тока сварки и диапазона регулирования проводятся до процесса сварки. Если во время сварки сварщик чувствует несоответствие сварочного тока, то увеличением давления на датчик давления он приведет в движение сервопривод, прикрепленный непосредственно к регулятору сварочного тока. Чем сильней будет давление на датчик давления, тем на больший угол произойдет движение сервопривода, а значит, будет и больше (или меньше) величина сварочного тока. Максимальный угол, на который может отклониться сервопривод, задается до сварки и не может быть превышен. Чувствительность регулятора тоже выбирается заранее. Принципиальная электрическая схема приведена на рис. 3.

kram3.tif

Рис. 3. Принципиальная электрическая схема регулятора сварочного тока (Д – датчик; К – кнопка; М – серводвигатель; штриховая линия – сигнал управления)

kram4.tif

Рис. 4. Эскиз доработанной сварочной горелки (1 – медная (латунная) направляющая проволоки; 2 – спиральная металлическая «рубашка»; 3 – кнопка «Пуск»; 4 – рукоять; 5 – шланг; 6 – контакты кнопки; 7 – газовый штуцер; 8 – проточка; 9 – ось двигателя; 10 – эксцентрическая ось; 11 – подшипник; 12 – проволока и бобина; 13 – кнопка с датчиком давления)

kram5.tif

Рис. 5. Механизм крепления сервопривода к источнику питания (1 – прижим к корпусу; 2 – крепление сервопривода; 3 – вал)

Кнопка служит для предварительной установки режимов. Микроконтроллер осуществляет движение привода исходя из ранее заданной программы и давления на датчик.

В саму горелку датчик давления встраивается непосредственно рядом с кнопкой «Пуск» (рис. 4) либо под ней, под возвратную пружину, которая будет обеспечивать давление на датчик.

Сервопривод крепится к источнику питания посредством вала с двумя лапами по краям, которые прижимаются к стенкам источника питания. На валу установлен кронштейн, который может перемещаться вдоль вала, что дает устройству универсальность использования с любым источником питания (рис. 5). А установка регулятора без разбора источника питания не нарушит гарантийных обязательств.

Второе применение данного устройства – это низкочастотное модулирование сварочного тока. Модулирование сварочного тока предоставляет возможность освободить сварщика от трудоёмкой операции дозирования теплоты и переложить ее на специальное устройство – модулятор. Сварщику остается лишь сосредоточить своё внимание на заполнении разделки шва. Наложение импульсов тока на дугу небольшой мощности при сварке плавящимся электродом позволяет снизить тепловложение, улучшить формирование шва, упростить технику выполнения сварки. Эффективная (средняя) величина тока при этом уменьшается на 20–30 % [3, 4].

Но у данного способа будет ограничена максимальная частота модуляции, которая будет равна скорости движения сервопривода и реакции устройства на изменение. Современные инверторные источники питания имеют малое время реакции, поэтому исключим его из расчета.

Сервопривод имеет скорость вращения в среднем 60 ° за 120 мс. При стандартной ручке регулировки с углом 270 °, угол в 60 ° будет составлять примерно 25 %. То есть для регулирования в диапазоне 50 % необходимо затрачивать в среднем 500 мс на период, то есть максимальная частота будет составлять 2 Гц. К примеру, такие режимы, как SpeedUp [5] от компании Lorch, имеют частоту модуляции от 0,3 до 5 Гц при рекомендованной частоте 1 Гц. При частоте 1 Гц изменение тока будет иметь следующую закономерность (рис. 6).

kram6.tif

Рис. 6. Изменение тока по времени при модуляции (I – сила тока, А; t – время, мс)

Как видно из рисунка, средняя сила тока при этом способе будет равна 75 А.

Апробирование устройства осуществлялось при сварке вертикального шва. Образец был собран из пластин толщиной 4 мм с зазором 1 мм. Сварка производилась сварщиком с низкой квалификацией. Сварка осуществлялась «снизу – вверх» без поперечных колебаний и манипуляций электродом. Ток паузы составлял 40 А при длительности 500 мс. Ток импульса достигал 130 А при длительности 300 мс. Средний ток можно высчитать по следующей формуле:

Читайте так же:
Как отрегулировать зажигание на ямаха джог

kram01.wmf(1)

где Iимп – сила тока во время импульса, Iп – сила тока во время паузы, tимп – длительность импульса, tп – длительность паузы.

Подставляя данные, получим ток, равный 73 А. Электрод LB-52U диаметром 2,6 мм. Сварочный аппарат СОЮЗ САС-97И255М. Внешний вид доработанного источника питания представлен на рис. 7. На рис. 8 приведен внешний вид сварного шва. Как видно по рисунку, отсутствуют шлаковые включения, подрезы и наплывы. Разбрызгивание невелико.

kram7.tif

Рис. 7. Фото источника питания с сервоприводом

kram8.tif

Рис. 8. Внешний вид сварного шва

kram9.tif

Рис. 9. Макрошлиф сварного шва

На рис. 9 показан макрошлиф сварного шва. На нем видно полное проплавление с допустимым ослаблением обратного валика и отсутствие видимых дефектов.

На рис. 10 представлены микрошлифы наплавленного металла (а), зоны термического влияния (б) и основного металла (в). Металл шва – литая структура с небольшой ориентацией. Линия сплавления выражена неявно. В зоне термического влияния наблюдаются небольшие поля перлита. Дефектов в металле шва и зоне термического влияния не наблюдается.

kram10a.tif kram10ab.tifkram10c.tif

Рис. 10. Микроструктуры (x100) наплавленного металла (а), зоны термического влияния (б) и основного металла (в)

Таким образом, разработанное устройство позволило добиться высокого качества вертикального сварного шва сварщиком с низкой квалификацией.

Дальнейшие исследования будут направлены на удобство регулятора, на апробирование модуляции тока в разных пространственных положениях и сталей, разных толщин. Также данный регулятор будет испытан для механизированной сварки в среде защитных газов.

Выводы

1. Данное устройство позволит без особых затрат доработать любой источник питания как для ручной дуговой, так и для механизированной сварки.

2. Управление тепловложением в сварное соединение позволит выполнять сварку в различных пространственных положениях даже сварщикам с низкой квалификацией.

3. Разработка позволит сварщикам реагировать на изменение условий сварки без прерывания процесса.

Электрическая схема сварочного аппарата Дон 200

Электрическая схема сварочного аппарата Дон 200 производства 2009-2010г.

на сайте производителя

Image
Принцип работы сварочного инвертора.

Принцип работы инверторного сварочного аппарата основан на том, что сетевое напряжение частотой 50 Гц, пройдя через фильтр и выпрямитель, преобразуется до частоты 25-50Кгц, благодаря чему появляется возможность заменить крупногабаритный силовой трансформатор на высокочастотный, что резко снижает массогабаритные показатели. Применение принципа широтно-импульсной модуляции обеспечивает удобное и точное управление силой сварочного тока и другими параметрами, а также обеспечивает стабильность и устойчивость горения дуги. Современный инверторный сварочный аппарат потребляет в 2-3 раза меньшую мощность по сравнению с выпрямителями традиционной конструкции, имеет КПД 85-90%, малые габариты и вес, высокую электробезопасность. В отличие от обычных сварочных выпрямителей, у которых силовой трансформатор работает на частоте сетевого напряжения 50 Гц, сварочный инвертор использует ток высокой частоты (десятки килогерц). Повышение частоты тока, протекающего через силовой трансформатор, позволило существенно уменьшить его массу и габариты. Если у обычных выпрямителей величина, характеризующая отношение сварочного тока к массе, равна 1-1,5 А/кг, то у сварочных инверторов, собранных на «скоростных» тиристорах, этот показатель вырос до 4-5 А/кг. Основным принципом работы сварочного инвертора является многократное поэтапное преобразование электрической энергии. Можно выделить основные этапы преобразования тока в сварочном инверторе: выпрямление переменного сетевого напряжения частотой 50 Гц в первичном выпрямителе, собранном из силовых диодов по мостовой схеме; преобразование полученного выпрямленного напряжения с повышенными пульсациями в переменное напряжение высокой частоты с помощью инвертирующего преобразователя; понижение переменного напряжения высокой частоты импульсным высокочастотным трансформатором до значения, соответствующего напряжению сварки, с формированием необходимого вида вольтамперной характеристики; преобразование вторичным выпрямителем переменного напряжения высокой частоты, имеющего величину сварочного напряжения, в постоянное напряжение со сглаживанием пульсаций тока. Инверторные сварочные аппараты, получившие распространение благодаря технологии преобразования тока и появлению соответствующих деталей, работают на базе МОП-транзисторов высокой мощности для преобразования рабочей частоты 50/60Гц в более высокую частоту (100 кГц и выше). Затем напряжение понижается, и происходит регулирование тока. При помощи широтно-импульсной модуляции обеспечивается питание сварочной дуги постоянным током большой мощности. Благодаря применению инверторной технологии переключения мощности удалось уменьшить вес и размеры основного трансформатора сварочного аппарата и увеличить эффективность на 30%. Кроме того, в системе электрода дуги используются принципы высоких частот.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector