Avtoprokat-rzn.ru

Автопрокат Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как синхронизировать два двигателя на один вал

Как синхронизировать два двигателя на один вал

Синхронное вращение двух асинхронных электродвигателей в системе электропривода

Схема синхронного вращения при двух асинхронных двигателях с общим реостатом. Эта схема представлена на рис. 36; она состоит из двух асинхронных электродвигателей, статорные обмотки которых подсоединены к общей сети, а обмотки роторов присоединены параллельно к сопротивлению Ra. Необходимую устойчивость работы можно получить только при больших нагрузочных моментах, т.е. при больших величинах скольжения (что приводит к значительным потерям энергии в реостате), и при сравнительно небольшой разнице между нагрузочными моментами. Наличие сопротивления постоянно включенного во вторичную цепь, не позволяет рационально использовать двигатели, так как скорость вращения понижается и величина к. п. д. установки уменьшается. Постоянная схема может работать только при одинаковых параметрах обоих двигателей.

Рис. 36. Схема синхронного вращения двух асинхронных двигателей с общим реостатом

Рекламные предложения на основе ваших интересов:

Рис. 37. Механические характеристики совместной работы двух асинхронных двигателей на общий вал

Совместная работа электродвигателей на общий вал с жесткой механической связью между двигателями.

В строительной практике иногда прибегают к устройству электропривода с установкой двух двигателей на одном общем валу (мощные экскаваторы, крупные виброплощадки и др.).

Механическая характеристика такого привода представляет собой сумму характеристик отдельных двигателей.

В большинстве случаев асинхронные двигатели переменного тока одинаковой номинальной мощности имеют различные механические характеристики. На рис. 37 приведены механические характеристики двух двигателей 1 и 2 и общая характеристика привода 3. При каком-либо нагрузочном моменте, например Мл, привод будет вращаться со скоростью щ об/мин. Проведя горизонталь через точку А, найдем моменты М и Мг, развиваемые при этом двигателями. Как видно, больший момент нагрузки будет иметь двигатель с более жесткой механической характеристикой, что может вызвать его перегрев. Поэтому при установке двигателей, одинаковых по мощности, но с различными механическими характеристиками, необходимо во вторичную цепь двигателя с более жесткой характеристикой включать активное сопротивление соответствующей величины. Таким путем можно добиться того, что двигатели будут развивать одинаковые моменты в значительном диапазоне нагрузки.

Если для совместной работы устанавливаются электродвигатели различной номинальной мощности, то следует тщательно подобрать соответствующей величины добавочное сопротивление в цепи ротора одного из них.

Схема синхронного вращения с асинхронными вспомогательными машинами. Эта система включает два или несколько элементов, каждый из которых в свою очередь состоит из главного или рабочего двигателя и жестко связанной с ним вспомогательной машины. Отдельные элементы системы не имеют механической связи между собой. Наиболее простой является система из двух элементов. Каждый элемент состоит из главного приводного двигателя, связанного с валом производственного механизма, и вспомогательной или синхронизирующей электрической машины.

Вспомогательные или синхронизирующие машины служат для синхронизации хода валов двух производственных механизмов. Данная система синхронного вращения двигателей является устойчивой при различных нагрузках на валы производственных механизмов. Недостаток ее — необходимость иметь дополнительные машины, которые удорожают установку и усложняют ее эксплуатацию.

Читайте так же:
Chrysler voyager регулировка сцепления

Методы синхронизации скорости вращения двух частотно-регулируемых приводов

В некоторых приложениях может возникнуть необходимость синхронизации скоростей вращения валов нескольких электродвигателей, механически не связанных между собой. Зачастую для решения данной задачи можно обойтись без использования ПЛК и специализированных блоков синхронизации — исключительно возможностями современных преобразователей частоты. Ниже предлагается несколько простых способов реализации задачи синхронизации скоростей вращения валов нескольких электродвигателей.

Синхронизация без использования датчиков обратной связи по скорости

Данный метод наиболее прост в реализации, не требует дополнительных устройств (интерфейсных плат, датчиков обратной связи и др.). При использовании преобразователей частоты с хорошим бессенсорным векторным управлением может быть обеспечена точность синхронизации скоростей в пределах ± 1% в диапазоне регулирования 1:100 с динамическим откликом примерно 5Гц. Данный метод синхронизации скорости вращения может применяться, например, в частотно-каскадных схемах управления группой насосов.

Синхронизация по аналоговым входам-выходам:

Синхронизация выход-вход

Возможно настроить смещение скоростей, отмасштабировав аналоговый вход ПЧ2 или аналоговый выход ПЧ1. Данный метод синхронизации скоростей вращения можно реализовать практически на любых моделях частотных преобразователей с хорошим аналоговым выходом: разрядность ЦАП должна быть не менее 10.

В простейшем варианте можно просто давать параллельное задание одновременно на оба ЧРП:

Параллельная синхронизация

Синхронизация по последовательному интерфейсу:

Синхронизация по RS485

При этом методе синхронизации точность задания скорости ведомого ПЧ2 не зависит от разрядности АЦП и ЦАП аналоговых входов-выходов частотных преобразователей.

Не все частотные преобразователи, в том числе имеющие коммуникационные порты, могут работать в режиме синхронизации по последовательному интерфейсу. В режиме «Master/Slave” могут работать, например, частотные преобразователи Optidrive P2, Optidrive HVAC, Optidrive Plus 3GV и Optidrive VTC по RS-485, а также Delta VFD-С2000 по CANOpen.

Синхронизация по импульсным сигналам с датчиками обратной связи по скорости

Данный метод позволяет обеспечить на порядок более высокую точность синхронизации скоростей (± 0,1%) в диапазоне регулирования 1:1000 с динамическим откликом до 40Гц. В данном режиме могут работать, например, преобразователи частоты Delta VFD-С2000 с платами расширения PG и инкрементальными энкодерами с разрешением от 1000 имп/об.

Данный метод синхронизации скорости вращения нескольких частотно-регулируемых приводов востребован в полиграфическом оборудовании, прокатных станах, в упаковочных и фасовочных линиях, в оборудовании по производству пленки и т.д.

Ведущий и ведомый преобразователи работают с обратной связью по скорости:

Синхронизация с ОС по скорости

Если ведущий привод нерегулируемый или с простым не векторным преобразователем частоты или без возможности работать с обратной связью:

ОС по скорости

Синхронизация сервоприводов

Сервоприводы позволяют реализовать синхронизацию не только скоростей, но и углового положения валов относительно друг друга с чрезвычайно высокой точностью, например, до 0,001° в сервоприводе Delta ASDA-A2.

Читайте так же:
Карбюратор от явы 350 регулировка карбюратора

Портал крана

Например, в портальном кране обе оси привода портала должны обеспечить перемещение с постоянной скоростью, иначе возможны механические повреждения приводов. Встроенные в сервопривод ASDA-A2 арифметические функции синхронизации портальных приводов дают возможность осуществить синхронность движения по импульсным сигналам от контроллера системы, управляющего одной координатой. Двухосевое управление будет осуществляться самостоятельно, осуществляя синхронизацию. При недопустимом рассогласовании движения по положению появится сигнал аварии и система остановится.

Связь сервоприводов

Системы типа «электрический вал» на базе сервоприводов позволяют упростить механическую конструкцию системы, избавив её от системы передаточных шестерней, цепей, ремней и т. д., в различных типах роботизированного оборудования, сварочных, сборочных и обрабатывающих автоматических линиях.

При подготовке публикации использованы информационные материалы ООО «Интехникс».

Точная синхронизация скорости двигателей с преобразователями частоты YASKAWA GA500 и GA700

В данной статье мы хотим обратить ваше внимание на встроенные в стандартные версии преобразователей частоты YASKAWA возможности по точной синхронизации (согласованию) скоростей нескольких электродвигателей в том числе и с разными передаточными соотношениями.

Общие сведения

Задачи синхронизации скоростей исполнительных механизмов с различными передаточными соотношениями широко распространены в промышленности:

для обеспечения равномерности подачи материалов и продукции: подающие конвейера и шнеки;

в системах перемотки и намотки материалов: текстильное, полиграфическое, упаковочное и тому подобное оборудование;

формообразующее оборудование: экструдеры и прокатные станы различного типа.

Преобразователи частоты YASKAWA обеспечивают высокую точность задания и контроля скорости вращения электродвигателей, которая в сериях GA700 и GA500 может достигать 0,01 Гц, при соответствующем качестве мотора. Современные векторные алгоритмы управления двигателями, используемые ПЧ серий GA позволяют обеспечить максимальную быстроту реакции на изменение нагрузки для поддержания скорости в любых задачах.

YASKAWA ПЧ GA500 изменение скорости при ударном изменении нагрузки

Реакция контура управления скорости GA500 на изменение момента нагрузки

Для такой точности и диапазона частот (до 590 Гц) аналогового задания скорости уже недостаточно, поэтому используется или частотное задание (до 32 кГц), или цифровое по промышленным протоколам CANopen, CC-link, DeviceNet, EtherCat, Ethernet/IP, MECHATROLINK, Modbus, Powerlink, PROFIBUS-DP, Profinet. Так же при таком задании сигнал менее подвержен помехам, что повышает точность управления и уменьшает количество сбоев в работе.

Синхронизация скорости при использовании частотного сигнала

В отличии от многих других частотников, ПЧ YASKAWA имеют не только частотный вход для задания скорости с возможностью масштабирования сигнала, но и настраиваемый частотный выход, на который можно дублировать приходящее на ПЧ задание или передавать реальную скорость двигателя. Это позволяет легко обеспечить синхронизацию скоростей при последовательном (каскадном) и параллельном подключении группы преобразователей частоты. Транзисторный частотный выход позволяет подключать параллельно до четырех преобразователей серий GA.

YASKAWA GA500 и GA 700 Последовательная (каскадная) схема синхронизации скорости

Последовательная (каскадная) схема синхронизации скорости

YASKAWA GA500 и GA700 Параллельная схема синхронизации скорости.

Параллельная схема синхронизации скорости

Список параметров ПЧ на которые нужно обратить вынимание при настройке:

1) Параметр b1-01 определяет из какого источника (пульт, сети, входы) ПЧ будет получать задание частоты. В случае частотного задания скорости в нем нужно установит значение 4, при сетевом задании 2 или 3;

Читайте так же:
Что такое автоматическая регулировка частоты и мощности

2) Параметр H6-01 определяет назначение частотного входа RP. Для задания скорости ПЧ через RP в нем нужно установить значение равное 0;

3) Параметр H6-02 отвечает за соответствие частоты входного сигнала RP скорости и может быть использован в качестве электронного редуктора. Например, при подаче на вход RP сигнала с частотой 24000 Гц при установленном параметре H6-02 = 24000 преобразователь выдаст 100 % задания, что по умолчанию соответствует 60,00 Гц и коэффициент пересчет в этом случае равен 1/400;

YASKAWA параметрирование GX GA700 и GA500 с ПК и смартфонов

4) В параметр H6-03 задается при необходимости смещение входного сигнала RP. Например, при необходимости изменения скорости в ведомом не в n раз, а на m Гц или обмин;

5) Параметр H6-07 отвечает за соответствие частоты выходного сигнала MP скорости и может быть использован в качестве электронного редуктора. Например, при скорости 60,00 Гц (100%) и при установленном параметре H6-07=18000 на выходе MP сигнала с частотой 18000 Гц, что соответствует коэффициенту усиления равному 300;

6) В параметр H6-07 задается при необходимости смещение входного сигнала RP;

7) Параметр H6-06 определяет назначение частотного выхода MP. Для получения на выходе входного задания пропорционального RP в нем нужно установить 102, для пропорционального реальной скорости двигателя 105.

Задание скорости и опрос состояний ПЧ по сетевым протоколам при синхронизации

Задание скорости для ведущего (Master) ПЧ может быть, как частотное, так и по цифровому протоколу. Ведомые (Slave) ПЧ, не смотря на то что задание скорости идет по частотному сигналу, могут опрашиваться по цифровым протоколам для диагностики и изменения параметров (например, передаточного соотношения) с основной системы управления. В этом случае проектировщикам так же будет интересна функция, когда, используя одну плату, установленную в ведущий ПЧ, мы можем получать данные еще с четырех ПЧ GA подключенных к нему по встроенному порту RS485 (Modbus RTU).

YASKAWA GA700 и GA500 Пример схемы с заданием скорости по сетевому протоколу.

Пример схемы с заданием скорости по сетевому протоколу

Описанные возможности, дополненные функцией Droop Control и встроенным контроллером ПЧ YASKAWA c ПО DriveWorksEZ, позволяют решить основной объем задач, связанных с точной синхронизацией скоростей электродвигателей без привлечения дополнительного оборудования, то позволяет сократить стоимость системы управления и ускорить процесс проектирования. В случае решения задач, связанных с синхронизации (согласованием) положения валов двигателя нужно использовать преобразователи частоты с дополнительным ПО (прошивкой) «Электронный вал Electronic Line Shaft».

Как синхронизировать два двигателя на один вал

Два однотипных или разных электродвигателя способны работать на один вал. Такой многомашинный электропривод поможет решить некоторые инженерные задачи и применяется для:

— повышения надежности электропривода (ЭП) (даже если один двигатель выйдет из строя, второй будет поддерживать рабочее состояние механизма до выявления и устранения неполадки);
— улучшения энергетических показателей при работе с малыми нагрузками;
— уменьшения махового момента и потерь в пусковых сопротивлениях (реостатах);
— удобного расположения рабочих механизмов (при невозможном использовании крупногабаритного эл. двигателя, использование многомашинного электропривода позволит расположить два меньших двигателя при работе на 1 вал).
Читайте так же:
Регулировка карбюратора к 33б

Работа двух двигателей на один вал может быть использована как с двумя двигателями в одинаковых режимах работы, так и в разных. Кроме этого, также применяются разнородные электродвигатели (асинхронный, двигатель постоянного тока).

Идентичность механических характеристик является необходимым условием для нормальной работы двух двигателей в одинаковых режимах.

1. Работа двух двигателей постоянного тока с параллельным возбуждением:

Как видно из приведенного графика, всегда существует некоторое расхождение характеристик. Это явление вызвано отличием величин сопротивлений якорной цепи. В таком случае, для выравнивания характеристики, в цепь якоря второго двигателя нужно ввести дополнительное сопротивление (подобранное) для увеличения угла наклона прямой. Так же, несовпадение мех. характеристик может быть вызвано различной величиной магнитного потока, что происходит из-за неидентичности электрических машин (при сборке). Необходимо включить некоторое сопротивление, магнитный поток ослабнет и возрастет угловая скорость.

2. Работа на один вал ДПТ ПВ (последовательное возбуждение):

Благодаря большой крутизне характеристик, разница величины нагрузки двигателей не велика. Именно поэтому двигатель постоянного тока с ПВ наиболее приспособлен для работы на одном валу.

3. Совместная работа асинхронных двигателей (АД):

В этом случае расхождение механических характеристик АД обусловлено лишь различными сопротивлениями обмоток ротора (асинхронный двигатель с фазным ротором). Для реализации такого ЭП производят подбор двух одинаковых электрических машин.

4. Совместная работа двигателей, работающих в различных режимах:

Конструкция применяется с целью получения специальных искусственных характеристик.В случае, когда двигатели очень сильно отличаются друг от друга, возможен переход одного из них в генераторный режим:

Работа 2 ДПТ на один вал (генератор-двигатель «Г-Д») представляется простой схемой подключения электрических машин:

При реализации приведенной схемы можно произвести хорошее торможение в обоих направлениях движения, вращения. Полученная искусственная характеристика имеет вид:

Если же ДПТ включить в двигательный режим (2), а АД в генераторный (1), то механическая характеристика будет несколько специфичной:

Эффективные способы привода одного вала с несколькими двигателями?

Чтобы ответить на вопрос «почему бы не использовать более мощный двигатель», я являюсь наставником средней школы для команды робототехники FTC (First Tech Challenge) с небольшим опытом работы в области механики и оборудования. Они несколько ограничены в том, что им разрешено использовать, в частности двигатели. Макс. Макс.

В этом году они столкнулись с проблемой потребности в большей грузоподъемности, с которой могли бы помочь передачи, но чтобы получить подъем, они нуждались в высокой скорости, что в очень короткой (

Читайте так же:
Регулировка комбайна полесье 812

2 минуты) конкуренции было дорогостоящим компромиссом, когда была необходимость часто подниматься и опускаться.

Возможности, которые я рассмотрел (и у меня еще не было времени возиться, но я стараюсь исследовать и получать информацию от инженеров лучше, чем я сам)

  • Наличие двух двигателей, непосредственно приводящих в движение одну и ту же шестерню на валу, кажется первым очевидным ответом, но подверженным ошибкам (вылетает из синхронизации и потенциально может размолоть).
  • Два двигателя приводят в движение два отдельных шкива на ведомом валу, которые теоретически должны набирать мощность без проблем с зацеплением передачи.

Я планирую провести детские эксперименты и тесты, но так как мой опыт работы с ME очень слабый, я собираю информацию.

Дифференциал представляет собой механическое устройство , предназначенное для того, что вы предлагаете. Это позволит двум моторам вращаться с немного разными скоростями при одновременном объединении мощности. Самым распространенным применением дифференциала является трансмиссия автомобиля, в которой он используется для приведения в действие обоих колес от одного двигателя, в то же время позволяя колесам вращаться с разной скоростью, т.е. действуя в обратном смысле от приложения, которое вы ищете. ,

введите описание изображения здесь

В то время как механический дифференциал делает то, что вы просите, вам это не нужно.

Вы можете соединить два одинаковых электродвигателя вместе на одном валу. Там нет «проскальзывания из синхронизации», потому что нет проблемы синхронизации в первую очередь. Управляйте двумя двигателями одинаково, и оба будут развивать примерно одинаковый крутящий момент. Один из них будет иметь немного больший крутящий момент, чем другой, но два крутящих момента все же добавят. В небольшом несоответствии нет вреда.

В худшем случае вы полностью управляете одним двигателем, а другим — совсем нет. Неприводной двигатель будет просто добавлять небольшую фрикционную нагрузку на вал, пока его электрические соединения остаются открытыми. Пока вы двигаете каждый двигатель достаточно сильно, чтобы он мог вращаться на той же скорости вала без нагрузки, он не будет замедлять работу. Вам нужно будет по-разному управлять двумя двигателями, чтобы один из них добавлял крутящий момент к валу, а другой — для увеличения сопротивления.

Это предполагает, что у вас нет контроллера с обратной связью, который пытается регулировать скорость двигателя. Пока ваш контроллер изменяет только эффективное эквивалентное напряжение, которое видит двигатель, прямое подключение двух двигателей — это нормально.

Соединение двух двигателей раньше было проблемой. Они будут уравновешивать оба, отслеживая текущую ничью между ними и балансом. Соединение двух двигателей больше не является проблемой с появлением цифровых приводов, которые могут соединяться друг с другом. Это решает старую муфту двух валов с валом домкрата.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector