Avtoprokat-rzn.ru

Автопрокат Эволюшн
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы зарядных устройств для автомобильных аккумуляторов

Схемы зарядных устройств для автомобильных аккумуляторов

Автомобильная зарядка

Бывают случаи, особенно зимой, когда владельцы автомобилей нуждаются в подзарядке автомобильного аккумулятора от внешнего источника питания. Безусловно, людям, не имеющим хороших навыков работы с электротехникой, желательно купить заводское устройство зарядки аккумуляторной батареи, ещё лучше приобрести пуско-зарядное устройство для запуска двигателя с разряженным аккумулятором без потерь времени на внешнюю подзарядку.

Но если есть небольшие знания в области электроники, можно собрать простое зарядное устройство своими руками.

Общая характеристика

Надежное зарядное устройство

Для правильного обслуживания аккумулятора и продления срока его службы подзарядка требуется при падении напряжения на клеммах ниже 11,2 В. При таком напряжении двигатель, скорее всего, запустится, но при долгой стоянке зимой это приведёт к сульфатации пластин и, как следствие, к снижению ёмкости батареи. При длительной стоянке зимой необходимо регулярно следить за вольтажом на клеммах АКБ. Оно должно составлять 12 В. Лучше всего снять батарею и занести её в тёплое место, не забывая при этом следить за уровнем заряда.

Зарядка АКБ производится постоянным или импульсным током. При использовании блока питания постоянного напряжения ток для правильной зарядки должен составлять одну десятую часть от ёмкости батареи. Если ёмкость АКБ составляет 50 А-ч, то для зарядки необходим ток 5 ампер.

Аккумуляторное зарядное устройство

Для продления срока службы АКБ применяют методики десульфатации аккумуляторных пластин. Батарею разряжают до напряжения менее пяти вольт многократным потреблением большого тока краткой длительности. Пример такого потребления — запуск стартера. После этого производят медленную полную зарядку маленьким током в пределах одного ампера. Повторяют процесс 8—9 раз. Метод десульфатации является долгим по времени, но согласно всем исследованиям даёт хороший результат.

Нужно помнить, что при зарядке важно не допускать перезаряда АКБ. Заряд производится до напряжения 12,7—13,3 вольт и зависит от модели батареи. Максимальный заряд указывается в документации к аккумулятору, которую всегда можно найти в интернете.

Перезаряд вызывает закипание, увеличивает плотность электролита и, как следствие, разрушение пластин. Заводские устройства зарядки имеют системы контроля заряда и последующего отключения. Собрать самостоятельно такие системы, не обладая достаточными знаниями в электронике, достаточно сложно.

Схемы для сборки своими руками

Стоит рассказать о простых устройствах зарядки, которые можно собрать, обладая минимальными знаниями в электронике, а ёмкость заряда отследить путём подключения вольтметра или обыкновенного тестера.

Схема зарядки для экстренных случаев

Бывают случаи, когда автомобиль, простоявший ночь возле дома, утром невозможно завести из-за разряженного аккумулятора. Причин возникновения этого неприятного обстоятельства может быть много.

Если аккумулятор был в хорошем состоянии и немного разрядился, решить проблему помогут:

Зарядное устройство из блока питания ноута

  1. Источник постоянного напряжения 12—25 вольт.
  2. Сопротивление ограничения тока.

В качестве источника питания отлично подойдёт зарядное устройство от ноутбука. Оно обладает выходным напряжением в 19 вольт и током в пределах двух ампер, чего вполне достаточно для выполнения поставленной задачи. На выходном разъёме, как правило, внутренний вход — плюс, внешний контур штекера — минус.

В качестве ограничительного сопротивления, которое является обязательным, можно применить салонную лампочку. Можно использовать и более мощные лампы, например, от габаритов, но это создаст лишнюю нагрузку на блок питания, что очень нежелательно.

Собирается элементарная схема: минус блока питания подключается к лампочке, лампочка к минусу АКБ. Плюс идёт напрямую от батареи к блоку питания. В течение двух часов аккумулятор получит заряд для запуска двигателя.

Из блока питания от стационарного компьютера

Блок питания компа

Такое устройство более сложно в изготовлении, но его можно собрать с минимальными познаниями в электронике. Основой послужит ненужный блок от системного блока компьютера. Выходные напряжения таких блоков +5 и +12 вольт с выходным током около двух ампер. Эти параметры позволяют собрать немощное зарядное устройство, которое при правильной сборке долго и надёжно послужит хозяину. Полная зарядка аккумулятора займёт длительное время и будет зависеть от ёмкости батареи, но не будет создаваться эффекта десульфатации пластин. Итак, пошаговая сборка прибора:

  1. Разобрать блок питания и выпаять все провода кроме зелёного. Запомнить или отметить места входа чёрного (GND) и жёлтого +12 В.
  2. Зелёный провод припаять к месту, где находился чёрный (это необходимо для старта блока без системной платы ПК). На место чёрного провода припаять отвод, который будет минусовым для зарядки АКБ. На место жёлтого провода припаять плюсовой отвод зарядки аккумулятора.
  3. Необходимо найти микросхему TL 494 или её аналог. Список аналогов легко найти в интернете, один из них обязательно будет найден в схеме. При всём многообразии блоков без этих микросхем их не производят.
  4. От первой ноги этой микросхемы — она левая нижняя, найти резистор, который идёт на выход +12 вольт (жёлтый провод). Это можно сделать визуально по дорожкам на схеме, можно при помощи тестера, подключив питание и замерив напряжение на входе резисторов, идущих к первой ноге. Не стоит забывать, что на первичную обмотку трансформатора идёт напряжение 220 вольт, поэтому нужно соблюдать меры безопасности при запуске блока без корпуса.
  5. Выпаять найденный резистор, замерить его сопротивление тестером. Подобрать близкий по номиналу переменный резистор. Выставить его на номинал нужного сопротивления и запаять на место удалённого элемента схемы гибкими проводами.
  6. Запустив блок питания путём регулировки переменного резистора, получить напряжение 14 В, в идеале 14.3 В. Главное, не перестараться помня, что 15 В, как правило, предел для отработки защиты и, как следствие, отключения.
  7. Выпаять переменный резистор, не сбив его настройку, и замерить получившееся сопротивление. Необходимый или максимально близкий номинал сопротивления подобрать или набрать из нескольких резисторов и запаять в схему.
  8. Блок проверить, на выходе должно быть искомое напряжение. При желании к выходам на схеме плюса и минуса можно подключить вольтметр, поместив его на корпусе для наглядности. Последующая сборка происходит в обратном порядке. Прибор готов к использованию.
Читайте так же:
Регулировка клапанов джили мк зазоры клапанов

Блок прекрасно заменит недорогую заводскую зарядку и достаточно надёжен. Но ОБЯЗАТЕЛЬНО нужно помнить, что устройство имеет защиту от перегрузки, но это не спасёт от ошибки в полярности. Проще говоря, если перепутать плюс и минус при подключении к АКБ, зарядное мгновенно выйдет из строя.

Схема зарядного устройства из старого трансформатора

Если под рукой нет старого блока питания от компьютера, и радиотехнический опыт позволяет самостоятельно монтировать несложные схемы, то можно воспользоваться следующей довольно интересной схемой зарядки АКБ с контролем и регулировкой подаваемого напряжения.

Трансформатор от телевизора

Для сборки устройства можно воспользоваться трансформаторами от старых блоков бесперебойного питания или телевизоров советского производства. Подойдёт любой мощный понижающий трансформатор с суммарным набором напряжений на вторичных обмотках примерно 25 вольт.

Диодный выпрямитель собран на двух диодах КД 213А (VD 1, VD 2), которые устанавливаются обязательно на радиатор и могут быть заменены любыми импортными аналогами. Аналогов много, и они легко подбираются по справочникам в интернете. Наверняка нужные диоды найдутся дома в старой ненужной аппаратуре.

Такой же метод можно применить для замены управляющего транзистора КТ 827А (VT 1) и стабилитрона Д 814 А (VD 3). Транзистор устанавливается на радиатор.

Регулировка подаваемого напряжения осуществляется переменным резистором R2. Схема простая и заведомо рабочая. Собрать её сможет человеку с минимальными познаниями в электронике.

Импульсная зарядка для АКБ

Импульсные блоки питания

Схема сложна в сборке, но это единственный недостаток. Найти простую схему импульсного блока зарядки вряд ли получится. Это компенсируется плюсами: такие блоки почти не греются, при этом имеют серьёзную мощность и большой КПД, отличаются компактным размером. Предложенная схема, в смонтированном на плате виде, уместиться в контейнер размером 160*50*40 мм. Для сборки прибора необходимо понимать принцип работы ШИМ (Широтно-импульсная модуляция) генератора. В предложенном варианте он реализован при помощи распространённого и недорогого контроллера IR 2153.

При применённых конденсаторах мощность прибора 190 Ватт. Этого хватит для зарядки любого аккумулятора лёгкого автомобиля ёмкостью до 100 А-ч. Установив конденсаторы по 470 мкФ, мощность возрастёт в два раза. Станет возможна зарядка АКБ ёмкостью до двухсот ампер/часов.

Полезный совет

При использовании устройств без автоматического контроля заряда АКБ можно применить простейшее сетевое, суточное реле китайского производства. Это избавит от необходимости следить за временем отключения блока от сети.

Стоимость такого прибора около 200 рублей. Зная примерное время зарядки своего аккумулятора, можно выставить нужное время отключения. Это гарантирует своевременное прекращение подачи электричества. Можно отвлечься на дела и забыть о АКБ, что может привести к закипанию, разрушению пластин и выходу аккумулятора из строя. Новый аккумулятор будет стоить гораздо дороже

Меры предосторожности

При использовании приборов, собранных своими руками, следует соблюдать следующие меры безопасности:

  1. Все приборы, включая АКБ, должны находиться на огнеупорной поверхности.
  2. При первичном применении изготовленного прибора необходимо обеспечить полный контроль всех параметров зарядки. Обязательно нужно контролировать температуру нагрева всех элементов зарядки и АКБ, нельзя допускать закипания электролита. Параметры напряжения и тока контролируют тестером. Первичный контроль поможет определить время полной зарядки аккумулятора, что пригодится в будущем.

Собрать зарядку для АКБ несложно даже для новичка. Главное, делать всё внимательно и соблюдать меры безопасности, т. к. придётся иметь дело с открытым напряжением в 220 вольт.

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

Читайте так же:
Инкубатор с автоматической регулировкой влажности

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Зарядное устройство регулировка по первичной обмотке трансформатора

Решил написать свой способ как собрать зарядное устройство для аккумулятора.
Сразу скажу, что зарядное работает исключительно в ручном режиме и ни сколько не портит аккумулятор, если следить за напряжением и током.

Для сборки нам понадобится:
— трансформатор 220/16 160Вт, то бишь на вторичной обмотке должно быть не менее 16 вольт без нагрузки и 10А максимальный ток. Ток можно меньше (т.к. аккумулятор заряжается 0,1 от номинального тока, то на аккумулятор 60А/ч потребуется ток 6А)
— диммер для электрического освещения квартиры или настольной лампы. Лишь бы мощность подошла. Лично я выбрал такой:

— диодный мост. Можно использовать диодный мост с генератора любого авто, а можно купить 4 диода, рассчитанные на нужный ток, на радиорынке и собрать их по схеме:

— вольтамперметр. Самый простой способ по-моему. Можно заказать прибор на АлиЭкспресс тут. Выглядит он так:

Всё в одном корпусе — вольтметр и амперметр. Напряжение питания прибора — 4,5 — 30В, измеряет ток до 10А.
Либо можно поставить два стрелочных или цифровых прибора, вольтметр и амперметр соответственно.

— корпус, конденсатор хотя бы на 2200мкФ * 25В, выключатель, предохранитель по 220В, предохранитель по 16В.

Зарядное устройство — это по сути мощный блок питания, имеющий вход 220В, а выход регулируется от

0 до нужного нам тока и напряжения.
Как же мы будем регулировать этот самый ток, ведь он достаточно велик. Некоторые БП строятся на тиристорных или симисторных регуляторах (а так же на полевиках) регулируя вторичный ток. Следовательно эти зарядные устройства дорогие, т.к. мощные тиристоры и так дорогие, дак к ним еще необходимо собрать схему управления.
Так же часто применяют зарядные на базе импульсных преобразователей напряжения. Тоже не дешёвый и не самый простой вариант.
Я же предлагаю регулировать первичный ток на трансформаторе посредством готового регулятора напряжения (диммер). А ток на вторичной обмотке напрямую зависит от тока на первичной обмотке. Только зная закон Ома ток в первичной обмотке будет значительно отличаться от вторичного (будет гораздо меньше)
А для не большого тока нужны и детали меньше, а следовательно дешевле (по этому диммеры, хоть и построены на симисторе, стоят очень дёшего).

Читайте так же:
Бензопила днепр регулировка карбюратора

Принципиальная схема прибора:

Если в диммере есть выключатель, то на схеме выключатель SA не нужен. Так же необходимо на проводе или в корпусе установить предохранитель по 16В для защиты от короткого замыкания выхода.

Так же необходимо поверить и откалибровать прибор по образцовому (цешка (мультиметр) в помощь). Калибруется он с помощью двух регуляторов на задней части платы (VR — напряжение и IR — ток)

В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.

Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.

Управление трансформатором по первичной обмотке

Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.

Особенности регуляторов для первички трансформаторов

Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.

Запас напряжения необходим для регулировки и ограничения зарядного тока.

В разных моделях аппаратов она производится разными способами:

  • Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
  • Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
  • Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.

Схема и назначение тиристорного регулятора напряжения для трансформатора

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Принцип действия тиристорного регулятора

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.

Разновидности и технические характеристики тиристорного регулятора

Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:

    Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “

” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.

Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:

  • Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
  • Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
    Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов:
  • КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
  • КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
  • КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
  • КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
  • КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.
Читайте так же:
Чери тиго как регулировать сцепление

Что представляет собой симистор

У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.

Другие простые варианты регулировки напряжения в первичке

Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

  • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
  • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
  • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

.
Предлагаемая универсальная конструкция предназначена для зарядки кислотных 12-ти и 6-ти вольтовых аккумуляторов и в состоянии обеспечить зарядный ток до 5-6 А. Регулировка тока – плавная. В отличие от распространенных схем, в этой конструкции управляющий элемент (тиристор VS1) включен в цепь первичной обмотки, что значительно уменьшило рассеиваемую на нем мощность и позволило обойтись без установки тиристора на радиатор. Схема контроля, собранная на стрелочном приборе PA1, тоже достаточно экономична, поскольку не имеет мощного шунта, включаемого обычно во вторичную цепь. Взглянем на принципиальную схему зарядного устройства.

Поскольку в качестве управляющего элемента служит тиристор, который не может работать с переменным током, его пришлось включить в диагональ моста, собранного на диодах VD1 – VD4. Регулировка тока через первичную обмотку (а значит, и зарядного тока) производится изменением угла открывания тиристора — за этим следит узел управления, собранный на однопереходном транзисторе VT1.

При изменении сопротивления переменного резистора R6, изменяется и время зарядки конденсатора С1. Чем дольше заряжается конденсатор, тем позже откроется транзистор, а значит и тиристор, после начала периода сетевого напряжения. Таким образом, ток через первичную обмотку трансформатора Т1 можно плавно регулировать от 0 до практически 100%. Напряжение на вторичной обмотке трансформатора при этом будет изменяться от 0 до 18 — 20 В, что и вызовет изменение зарядного тока аккумулятора.

Контролируют величину зарядного тока косвенно, измеряя ток через первичную обмотку при помощи стрелочного прибора PA1, включенного через балластный резистор R2 и зашунтированного двухваттным резистором R1. Лампа HL1 является индикаторной.

В конструкции кроме указанных на схеме могут быть использованы диоды Д231 – Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Устанавливать на радиаторы их не нужно. В качестве VS1 будут работать тиристоры КУ201К,Л, КУ202К,Л,М,Н. Радиатор тиристору тоже не нужен. Во вторичной цепи (на месте VD5 – VD8) кроме указанных на схеме будут работать Д231 – Д233 без буквенного индекса или с буквой А. Их придется установить на радиаторы площадью поверхности не менее 30 см. кв. каждый, (если диоды германиевые – Д305), или 100 см. кв., если кремниевые.

Конденсатор С1 должен быть с минимальным температурным коэффициентом емкости, к примеру, типа К73-17, К73-24. В противном случае при прогреве устройства зарядный ток будет «уходить». В качестве Т1 подойдет любой сетевой трансформатор мощностью не менее 150 Вт, способный отдать со вторичной обмотки напряжение 18-20 В при токе до 6-7 А. Очень удобно для этих целей использовать типовые трансформаторы ТН или ТАН, характеристики которых можно посмотреть в нашем справочнике по трансформаторам. В качестве измерительного прибора PA1 можно использовать любой микроамперметр с током полного отклонения 100 мкА.

Регулировка устройства сводится к подбору номинала резистора R2 для калибровки прибора PA1 с одновременным контролем зарядного тока. Единственный, пожалуй, недостаток такого зарядного устройства – наличие сетевого напряжения на схеме управления, поэтому в целях безопасности на резистор R6 нужно надеть ручку из изоляционного материала.

Читайте так же:
Регулировка числа оборотов электроинструмента

А.Н. Евсеев «Электронные устройства для дома», 1994 г.

Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!

Простое тиристорное зарядное устройство

Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.

Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.

Нажмите на картинку для просмотра.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см 2 . Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28. 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector